Inference for the Pareto Type-I distribution using upper record ranked set sampling scheme
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 191
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-8_010
تاریخ نمایه سازی: 20 خرداد 1403
چکیده مقاله:
In some real-life situations, we will face restrictions of time and sample size which cause a researcher to not have access to all of the data. Therefore, it is valuable to study the estimation of parameters based on information of available data. In such situations, using appropriate sampling schemes, to more efficient estimators are important. The aim of the present paper is to study the Bayes estimators of parameters of the Pareto type-I model under different loss functions and compare among them as well as with the classical estimator named maximum likelihood estimator based on upper record ranked set sampling scheme. Here the informative Gamma prior is used as the conjugate prior distribution for finding the Bayes estimator. We also used symmetric loss functions such as squared error loss function and asymmetric loss functions such as linear-exponential loss function. We present the analysis of a Monte Carlo simulation to compare the performance of the estimators with respect to their risks (average loss over sample space) based on upper record ranked set sampling. Finally, one real data set is analyzed to illustrate the performance of the proposed estimators.
کلیدواژه ها:
Pareto type-I model ، Bayesian estimator ، Upper record ranked set sampling ، Loss function ، Maximum likelihood estimator
نویسندگان
Ehsan Golzade Gervi
Department of Statistics, Payame Noor University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :