Stochastic gradient-based hyperbolic orthogonal neural networks for nonlinear dynamic systems identification

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 141

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-10-3_011

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

Orthogonal neural networks (ONNs) are some  powerful types of the neural networks in the modeling of non-linearity. They are constructed by the usage  of orthogonal functions sets. Piecewise continuous orthogonal functions (PCOFs) are some important classes of orthogonal functions. In this work, based on a set of hyperbolic PCOFs, we propose the hyperbolic ONNs  to identify the nonlinear dynamic systems. We train the proposed neural models with the stochastic gradient descent learning algorithm. Then, we prove the stability of this algorithm. Simulation results show the efficiencies of proposed model.

کلیدواژه ها:

System identification ، Piecewise continuous orthogonal functions ، Hyperbolic orthogonal neural networks ، Stochastic gradient descent

نویسندگان

Ghasem Ahmadi

Department of Mathematics, Payame Noor University, P.O. Box ۱۹۳۹۵-۴۶۹۷, Tehran, Iran