Global symplectic Lanczos method with application to matrix exponential approximation
محل انتشار: مجله مدلسازی ریاضی، دوره: 10، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 123
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-10-1_011
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
It is well-known that the symplectic Lanczos method is an efficient tool for computing a few eigenvalues of large and sparse Hamiltonian matrices. A variety of block Krylov subspace methods were introduced by Lopez and Simoncini to compute an approximation of \exp(M)V for a given large square Hamiltonian matrix M and a tall and skinny matrix V that preserves the geometric property of V. For the same purpose, in this paper, we have proposed a new method based on a global version of the symplectic Lanczos algorithm, called the global J-Lanczos method (GJ-Lanczos). To the best of our knowledge, this is probably the first adaptation of the symplectic Lanczos method in the global case. Numerical examples are given to illustrate the effectiveness of the proposed approach.
کلیدواژه ها:
نویسندگان
Atika Archid
Laboratory LabSI, Faculty of Science, University Ibn Zohr, Agadir
Abdeslem Bentbib
Laboratory LAMAI, Faculty of Science and Technology, University Cadi Ayyad, Marrakesh