Symmetric-diagonal reductions as preprocessing for symmetric positive definite generalized eigenvalue solvers
محل انتشار: مجله مدلسازی ریاضی، دوره: 11، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-11-2_006
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
We discuss some potential advantages of the orthogonal symmetric-diagonal reduction in two main versions of the Schur-QR method for symmetric positive definite generalized eigenvalue problems. We also advise and use the appropriate reductions as preprocessing on the solvers, mainly the Cholesky-QR method, of the considered problems. We discuss numerical stability of the methods via providing upper bound for backward error of the computed eigenpairs and via investigating two kinds of scaled residual errors. We also propose and apply two kinds of symmetrizing which improve the stability and the performance of the methods. Numerical experiments show that the implemented versions of the Schur-QR method and the preprocessed versions of the Cholesky-QR method are usually more stable than the Cholesky-QR method.
کلیدواژه ها:
Symmetric definite generalized eigenvalue problem ، Cholesky-QR method ، Schur-QR method ، QZ method ، rounding error analysis
نویسندگان
Morad Ahmadnasab
Department of Mathematics, Faculty of Science, University of Kurdistan, ۶۶۱۷۷-۱۵۱۷۵, Sanandaj, Iran