Symmetric-diagonal reductions as preprocessing for symmetric positive definite generalized eigenvalue solvers

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-11-2_006

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

We discuss  some potential advantages of the  orthogonal symmetric-diagonal reduction in  two main versions of the Schur-QR method  for symmetric positive definite  generalized eigenvalue problems. We also advise and use the appropriate reductions  as preprocessing on  the solvers, mainly  the Cholesky-QR method, of the  considered  problems. We discuss numerical stability of the  methods via providing upper bound for backward error of the computed eigenpairs and via investigating two kinds of  scaled residual errors. We also propose  and apply  two kinds of symmetrizing  which  improve  the stability and the performance  of the methods. Numerical experiments show that the  implemented versions of the Schur-QR method and the preprocessed versions of the Cholesky-QR  method are  usually more stable than the Cholesky-QR method.

کلیدواژه ها:

Symmetric definite generalized eigenvalue problem‎ ، ‎Cholesky-QR method‎ ، Schur-QR method ، QZ method ، ‎rounding error analysis

نویسندگان

Morad Ahmadnasab

Department of Mathematics, Faculty of Science, University of Kurdistan, ۶۶۱۷۷-۱۵۱۷۵, Sanandaj, Iran