Eigenvalue problem with fractional differential operator: Chebyshev cardinal spectral method

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 179

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-11-2_008

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

In this paper, we intend to introduce the Sturm-Liouville fractional problem and solve it using the collocation method based on Chebyshev cardinal polynomials. To this end, we first provide an introduction to the Sturm-Liouville fractional equation. Then the Chebyshev cardinal functions are introduced along with some of their properties and the operational matrices of the derivative, fractional integral, and Caputo fractional derivative are obtained for it. Here, for the first time, we solve the equation using the operational matrix of the fractional derivative without converting it to the corresponding integral equation. In addition to efficiency and accuracy, the proposed method is simple and applicable. The convergence of the method is investigated, and an example is presented to show its accuracy and efficiency.

کلیدواژه ها:

collocation method ، fractional Sturm-Liouville eigenvalue problem ، Chebyshev cardinal functions

نویسندگان

Alireza Afarideh

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Farhad Dastmalchi Saei

Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Behzad Nemati Saray

Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan ۴۵۱۳۷-۶۶۷۳۱, Iran