A fitted operator method of line scheme for solving two-parameter singularly perturbed parabolic convection-diffusion problems with time delay

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-11-2_011

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

This paper presents a parameter-uniform numerical scheme for the solution of two-parameter singularly perturbed parabolic convection-diffusion problems with a delay in time. The continuous problem is semi-discretized using the Crank-Nicolson finite difference method in the temporal direction. The resulting differential equation is then discretized on a uniform mesh using the fitted operator finite difference method of line scheme. The method is shown to be accurate in O(\left(\Delta t \right)^{۲}  + N^{-۲}) , where N is the number of mesh points in spatial discretization and \Delta t is the mesh length in temporal discretization. The parameter-uniform convergence of the method is shown by establishing the theoretical error bounds. Finally, the numerical results of the test problems validate the theoretical error bounds.

کلیدواژه ها:

Singular perturbation ، time-delayed parabolic convection-diffusion problems ، two small parameters ، the method of line ، finite difference scheme ، uniform convergence

نویسندگان

Naol Tufa Negero

Department of Mathematics, Wollega University, Nekemte, Ethiopia