Note to the convergence of minimum residual HSS method

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 141

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-9-2_012

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

The minimum residual HSS (MRHSS) method is proposed in [BIT Numerical Mathematics, ۵۹ (۲۰۱۹) ۲۹۹--۳۱۹] and its convergence analysis is proved under a certain condition. More recently in [Appl. Math. Lett. ۹۴ (۲۰۱۹) ۲۱۰--۲۱۶], an alternative version of MRHSS is presented which converges unconditionally. In general, as the second approach works with a weighted inner product, it consumes more CPU time than MRHSS to converge. In the current work, we revisit the convergence analysis of the MRHSS method using a different strategy and state the convergence result for general two-step iterative schemes. It turns out that a special choice of parameters in the MRHSS results in an unconditionally convergent method without using a weighted inner product. Numerical experiments confirm the validity of established results.

کلیدواژه ها:

Minimum residual technique ، Hermitian and skew-Hermitian splitting ، two-step iterative method ، Convergence

نویسندگان

Arezo Ameri

Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran

Fatemeh Panjeh Ali Beik

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran