A combined dictionary learning and TV model for image restoration with convergence analysis
محل انتشار: مجله مدلسازی ریاضی، دوره: 9، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 187
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-9-1_002
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
We consider in this paper the l_۰-norm based dictionary learning approach combined with total variation regularization for the image restoration problem. It is formulated as a nonconvex nonsmooth optimization problem. Despite that this image restoration model has been proposed in many works, it remains important to ensure that the considered minimization method satisfies the global convergence property, which is the main objective of this work. Therefore, we employ the proximal alternating linearized minimization method whereby we demonstrate the global convergence of the generated sequence to a critical point. The results of several experiments demonstrate the performance of the proposed algorithm for image restoration.
کلیدواژه ها:
نویسندگان
Souad Mohaoui
Department of mathematics, University of Cadi Ayad, Marrakesh, Morocco
Abdelilah Hakim
Department of mathematics, University of Cadi Ayad, Marrakesh, Morocco
Said Raghay
Department of mathematics, University of Cadi Ayad, Marrakesh, Morocco