A new outlier detection method for high dimensional fuzzy databases based on LOF

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 210

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-6-2_001

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

Despite the importance  of fuzzy data and existence of  many powerful methods for determining crisp outliers, there are few approaches for identifying outliers in fuzzy database. In this regard, the present article introduces a new method for discovering outliers among a set of multidimensional data. In order to provide a complete fuzzy strategy, first we extend the density-based local outlier factor method (LOF), which is successfully applied for  identifying multidimensional crisp outliers. Next, by using the left and right scoring defuzzyfied method, a fuzzy data outlier degree is determined. Finally, the efficiency of the method in outlier detection is shown by numerical examples.

کلیدواژه ها:

Fuzzy numbers ، Outlier data ، LOF factor ، alpha-cut ، Left and right scoring

نویسندگان

Alireza Fakharzadeh Jahromi

Department of Applied Mathematics, Shiraz University of Technology, Shiraz, Iran & Fars Elites Foundation, Shiraz, Iran, P.O. Box ۷۱۹۶۶-۹۸۸۹۳

Zahra Ebrahimi Mimand

PayamNoor University, Shiraz Branch, shiraz, Iran