A fitted mesh method for a coupled system of two singularly perturbed first order differential equations with discontinuous source term
محل انتشار: مجله مدلسازی ریاضی، دوره: 8، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 72
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-8-1_004
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
In this work, an initial value problem for a weakly coupled system of two singularly perturbed ordinary differential equations with discontinuous source term is considered. In general, the system does not obey the standard maximum principle. The solution to the system has initial and interior layers that overlap and interact. To analyze the behavior of these layers, piecewise-uniform Shishkin meshes and graded Bakhvalov meshes are constructed. A backward finite difference scheme is considered on the meshes and is proved to be uniformly convergent in the maximum norm. Numerical experiments for both the Shishkin and Bakhvalov meshes are provided in support of the theory.
کلیدواژه ها:
Singular perturbation ، parameter-uniform convergence ، backward difference scheme ، Shishkin mesh ، Bakhvalov mesh ، initial and interior layers
نویسندگان
Sheetal Chawla
Department of Mathematics, Pt. N.R.S. Government College Rohtak, Haryana-۱۲۴۰۰۱, India
Urmil Suhag
Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana-۱۲۴۰۰۱, India
Jagbir Singh
Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana-۱۲۴۰۰۱, India