A fitted mesh method for a coupled system of two singularly perturbed first order differential equations with discontinuous source term

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 72

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-8-1_004

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

In this work, an initial value problem for a weakly coupled system of two singularly perturbed ordinary differential equations with discontinuous source term is considered. In general, the system does not obey the standard maximum principle. The solution to the system has initial and  interior layers that overlap and interact. To analyze the behavior of these layers, piecewise-uniform Shishkin meshes and graded Bakhvalov meshes are constructed. A backward finite difference scheme is considered on the meshes and is proved to be  uniformly convergent in the maximum norm. Numerical experiments for both the Shishkin and Bakhvalov meshes are provided in support of the theory.

نویسندگان

Sheetal Chawla

Department of Mathematics, Pt. N.R.S. Government College Rohtak, Haryana-۱۲۴۰۰۱, India

Urmil Suhag

Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana-۱۲۴۰۰۱, India

Jagbir Singh

Department of Mathematics, Maharshi Dayanand University, Rohtak, Haryana-۱۲۴۰۰۱, India