A new numerical method for discretization of the nonlinear Klein-Gordon model arising in light waves
محل انتشار: مجله مدلسازی ریاضی، دوره: 12، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 323
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-1_005
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
Due to the importance of the generalized nonlinear Klein-Gordon equation (NL-KGE) in describing the behavior of light waves and nonlinear optical materials, including phenomena such as optical switching by manipulating the dispersion and nonlinearity of optical fibers and stable solitons, we explain the approximation of this model by evaluating different classical and fractional terms in this paper. To estimate the fundamental function, we use a first-order finite difference approach in the temporal direction and a collocation method based on Gegenbauer polynomials (GP) in the spatial direction to solve the NL-KGE model. Moreover, the stability and convergence analysis is proved by examining the order of the new method in the time direction as \mathcal{O}( \delta t ). To demonstrate the efficiency of this design, we presented numerical examples and made comparisons with other methods in the literature.
کلیدواژه ها:
نویسندگان
Hamid Mesgarani
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran
Yones Esmaeelzade Aghdam
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran
Ezzatollah Darabi
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran