A new numerical method for discretization of the nonlinear Klein-Gordon model arising in light waves

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 323

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-12-1_005

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

Due to the importance of the generalized nonlinear Klein-Gordon equation (NL-KGE) in describing the behavior of light waves and nonlinear optical materials, including phenomena such as optical switching by manipulating the dispersion and nonlinearity of optical fibers and stable solitons,  we explain the approximation of this model by evaluating different classical and fractional terms  in this paper. To estimate the fundamental function, we use a first-order finite difference approach in the temporal direction and a collocation method based on Gegenbauer polynomials (GP) in the spatial direction to solve the NL-KGE model. Moreover, the stability and convergence analysis is proved by examining the order of the new method in the time direction as \mathcal{O}( \delta t ). To demonstrate the efficiency of this design, we presented numerical examples and made comparisons with other methods in the literature.

نویسندگان

Hamid Mesgarani

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran

Yones Esmaeelzade Aghdam

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran

Ezzatollah Darabi

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, ۱۶۷۸۵ -۱۳۶, I. R. Iran