Automatic Configuration of Federated Learning Client in Graph Classification using Genetic Algorithms

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 138

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-1_010

تاریخ نمایه سازی: 10 خرداد 1403

چکیده مقاله:

With the increasing interconnectedness of communications and social networks, graph-based learning techniques offer valuable information extraction from data. Traditional centralized learning methods faced challenges, including data privacy violations and costly maintenance in a centralized environment. To address these, decentralized learning approaches like Federated Learning have emerged. This study explores the significant attention Federated Learning has gained in graph classification and investigates how Model Agnostic Meta-Learning (MAML) can improve its performance, especially concerning non-IID (Non-Independent Identically Distributed) data distributions.In real-world scenarios, deploying Federated Learning poses challenges, particularly in tuning client parameters and structures due to data isolation and diversity. To address this issue, this study proposes an innovative approach using Genetic Algorithms (GA) for automatic tuning of structures and parameters. By integrating GA with MAML-based clients in Federated Learning, various aspects, such as graph classification structure, learning rate, and optimization function type, can be automatically adjusted. This novel approach yields improved accuracy in decentralized learning at both the client and server levels.

کلیدواژه ها:

Federated Learning ، Model Agnostic Meta-Learning (MAML) ، Federated Learning on Graph

نویسندگان

Mohammad Rezaei

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

Mohsen Rezvani

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

Morteza Zahedi

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Scott, What is social network analysis? Bloomsbury Academic, ۲۰۱۲. ...
  • A. Khazane et al., "DeepTrax: Embedding graphs of financial transactions," ...
  • R. Li, Z. Liu, Y. Ma, D. Yang, and S. ...
  • G. A. Pavlopoulos et al., "Using graph theory to analyze ...
  • A. J. Smola and R. Kondor, "Kernels and regularization on ...
  • J. Wen, X. Fang, Y. Xu, C. Tian, and L. ...
  • H. Cai, V. W. Zheng, and K. C.-C. Chang, "A ...
  • Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, ...
  • S. Fortunato, "Community detection in graphs," Physics reports, vol. ۴۸۶, ...
  • S. Sarkar and A. Dong, "Community detection in graphs using ...
  • A. Zakrzewska and D. A. Bader, "A dynamic algorithm for ...
  • F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, "Random-walk ...
  • S. Wu, W. Ren, C. Yu, G. Chen, D. Zhang, ...
  • C. C. Noble and D. J. Cook, "Graph-based anomaly detection," ...
  • R. J. Bolton and D. J. Hand, "Statistical fraud detection: ...
  • Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang, "Survey ...
  • Q. Yang, Y. Liu, T. Chen, and Y. Tong, "Federated ...
  • C. Chen, Z. Xu, W. Hu, Z. Zheng, and J. ...
  • P. Kairouz et al., "Advances and open problems in federated ...
  • A. Fallah, A. Mokhtari, and A. Ozdaglar, "Personalized federated learning: ...
  • B. Wang, A. Li, H. Li, and Y. Chen, "GraphFL: ...
  • C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang, ...
  • S. Ru, B. Zhang, Y. Jie, C. Zhang, L. Wei, ...
  • R. Liu, P. Xing, Z. Deng, A. Li, C. Guan, ...
  • Z. Liu, L. Yang, Z. Fan, H. Peng, and P. ...
  • M. Suganuma, S. Shirakawa, and T. Nagao, "A genetic programming ...
  • S. Gibb, H. M. La, and S. Louis, "A genetic ...
  • Y. Sun, B. Xue, M. Zhang, G. G. Yen, and ...
  • A. Antoniou, H. Edwards, and A. Storkey, "How to train ...
  • Z. Falahiazar, A. R. Bagheri, and M. Reshadi, "Determining parameters ...
  • Y. Zhou, Q. Ye, and J. Lv, "Communication-efficient federated learning ...
  • T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. ...
  • C. Cabanes et al., "The CORA dataset: validation and diagnostics ...
  • P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, ...
  • نمایش کامل مراجع