Comparison of three LDA, PCA and ICA Fast methods using fourteen data analysis algorithms to develop a risk assessment management model for export declarations to deal with illegal trade in Iran customs
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 61
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-7_027
تاریخ نمایه سازی: 29 اردیبهشت 1403
چکیده مقاله:
Risk assessment is the main component of risk management, therefore, developing a suitable data analysis model is particularly important in customs. The purpose of this research is to use data mining techniques to develop an intelligent model for timely prediction of the risk level of export declarations in customs and as a result to prevent irreparable damages. Data mining techniques have been used in this research considering the data-oriented statistical population. The statistical data of the cross-border trade system of the Iranian customs is ۶۹۸,۷۸۱ data of the export declaration of the entire customs of the country of Iran for the year ۲۰۱۹-۲۰۲۰. Using Python programming language, feature reduction and effective feature extraction were performed after data preprocessing and preparation, with three methods of principal component analysis, linear differential analysis, and fast independent component analysis. Then for the predictive modelling of fourteen classification algorithms, three methods of principal component analysis (PCA), linear discriminant analysis (LDA) and fast independent component analysis (Fast ICA) were used and eighty percent of the training data were used. After training the models, forty-two different models were extracted. For testing, the obtained models were tested with twenty percent of the data. The test results of the models were compared with standard metrics to evaluate the efficiency of the models and the model obtained from the random forest algorithm with the fast independent component analysis method with three features was selected as the best model for predicting and determining the risk level of export declarations in customs.
کلیدواژه ها:
نویسندگان
Hassan Ali Khojasteh Aliabadi
Department of Public-Financial Management, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Saeed Daei-Karimzadeh
Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Majid Iranpour Mobarakeh
Faculty of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
Farsad Zamani Boroujeni
dFaculty of Engineering, Department of Computer, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :