River Mobile Armor Layer Induced by Flood

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 20

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-9-6_005

تاریخ نمایه سازی: 2 اردیبهشت 1403

چکیده مقاله:

The armored layer is crucial for protecting the riverbed. The bed layer of the river is a movable material that protects the material below the surface layer. This study aimed to develop formulas to estimate the thickness of a mobile armor layer with noncohesive materials and establish a correlation between the flow velocity and shear stress under conditions of erosion and sedimentation. The research methods included field measurements, laboratory tests, and numerical simulations. The primary data included grain size gradation profiles, river topography, and flood discharge. The results demonstrated consistency in the behavior of the riverbed under various flood discharge conditions. The fundamental variables affecting the mobile armor thickness included the gradation coefficient (sv) and the dimensionless shear stress (t۰/tc). The fundamental novelty of this study is the derivation of the mobile armor layer thickness, which is influenced by grain size and shear stress. The present findings significantly contribute to the design of more efficient and environmentally friendly riverbed protection rather than rigid structures. These results indicated that erosion and sedimentation were primarily influenced by the flow velocity and the applied shear stress above the riverbed. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۳-۰۹-۰۶-۰۵ Full Text: PDF

کلیدواژه ها:

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Cooper, J. R., & Tait, S. J. (2009). Water-worked gravel ...
  • Yager, E. M., Kenworthy, M., & Monsalve, A. (2015). Taking ...
  • Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, ...
  • Hunziker, R. P., & Jaeggi, M. N. R. (2002). Grain ...
  • Marion, A., & Fraccarollo, L. (1997). Experimental investigation of mobile ...
  • Ikhsan, C., Permana, A. S., & Negara, A. S. (2022). ...
  • Pasternack, G. B. (2010). Gravel/Cobble Augmentation Implementation Plan (GAIP) for ...
  • Tranmer, A. W., Caamaño, D., Clayton, S. R., Giglou, A. ...
  • Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures ...
  • Chin, C. O., Melville, B. W., & Raudkivi, A. J. ...
  • Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of ...
  • Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of ...
  • Koll, K., Koll, K., & Dittrich, A. (2010). Sediment transport ...
  • Ikhsan, C., Rahajo, A., & Legono, D. (2014). The formation ...
  • Curran, J. C., & Waters, K. A. (2014). The importance ...
  • Parker, G., Klingeman, P. C., & McLean, D. G. (1982). ...
  • Orrú, C., Blom, A., & Uijttewaal, W. S. J. (2016). ...
  • Mao, L., Cooper, J. R., & Frostick, L. E. (2011). ...
  • Powell, D. M., Ockelford, A., Rice, S. P., Hillier, J. ...
  • Vericat, D., Batalla, R. J., & Garcia, C. (2006). Breakup ...
  • Plumb, B. D., Juez, C., Annable, W. K., McKie, C. ...
  • Hassan, M. A., Egozi, R., & Parker, G. (2006). Experiments ...
  • Marion, A., Tait, S. J., & McEwan, I. K. (2003). ...
  • Heays, K. G., Friedrich, H., & Melville, B. W. (2014). ...
  • Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, ...
  • Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, ...
  • Lisle, T. E., & Madej, M. A. (1992). Spatial variation ...
  • Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time ...
  • Bertin, S., & Friedrich, H. (2018). Effect of surface texture ...
  • Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, ...
  • Viparelli, E., Gaeuman, D., Wilcock, P., & Parker, G. (2011). ...
  • Wilcock, P. R., Kenworthy, S. T., & Crowe, J. C. ...
  • Butler, D., May, R., & Ackers, J. (2003). Self-cleansing sewer ...
  • Das, B. M. (2019). Advanced soil mechanics. CRC Press, London, ...
  • Islam, M. A., Badhon, F. F., & Abedin, M. Z. ...
  • Hamidi, A., Azini, E., & Masoudi, B. (2012). Impact of ...
  • Triatmodjo, B. (2015). Applied Hydrology (5th Ed.). Beta Offset Yogyakarta, ...
  • Technical Supplement 13A. (2007). Guidelines for Sampling Bed Material. Part ...
  • Melville, B. W. (1999). Book Review: Fluvial Hydraulics: Flow and ...
  • López, R., Vericat, D., & Batalla, R. J. (2014). Evaluation ...
  • HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering ...
  • HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering ...
  • Shatnawi, A., & Ibrahim, M. (2022). Derivation of flood hydrographs ...
  • Cordier, F., Tassi, P., Claude, N., van Bang, D. P., ...
  • Bettess, R., & Frangipane, A. (2003). A one-layer model to ...
  • Almasalmeh, O., Saleh, A. A., & Mourad, K. A. (2021). ...
  • Naderi, M., Afzalimehr, H., Dehghan, A., Darban, N., Nazari-Sharabian, M., ...
  • Ohsumi Work Office. (1988). Debris Flow at Sakurajima. Ohsumi Work ...
  • Hirano, M., Hashimoto, H., Kouno, M., Onda, K., & Park, ...
  • Takahashi, T. (2009). A Review of Japanese Debris Flow Research. ...
  • Pandey, M., Chen, S. C., Sharma, P. K., Ojha, C. ...
  • Jobson, H. E., & Froehlich, D. C. (1987). Basic principles ...
  • Negara, A. S., Ikhsan, C., Hadiani, R. R., & Yusep, ...
  • United States department of Agriculture. (2012). Chapter 3 Engineering Classification ...
  • Yunatci, A. A., & Çetın, K. Ö. (2022). Large Scale ...
  • Simoni, A., & Houlsby, G. T. (2006). The direct shear ...
  • نمایش کامل مراجع