The Reliability of W-flow Run-off-Rainfall Model in Predicting Rainfall to the Discharge
محل انتشار: ژورنال مهندسی عمران، دوره: 9، شماره: 7
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-9-7_015
تاریخ نمایه سازی: 2 اردیبهشت 1403
چکیده مقاله:
This research intends to predict the discharge (run-off) from rainfall for which the model is built using W-flow. The research location is in the Gajah Mungkur reservoir (Wonogiri) in Indonesia. The estimation of reservoir inflow has an important role, mainly in the scheme of reservoir operation and management. However, the heterogeneity of complex spatial and temporal patterns of rainfall and also the physiographic context of a watershed cause the development of a model of real-time run-off and rainfall that can accurately predict the reservoir inflow to become a challenge in the development of water resources. In relation to the analysis and prediction of rainfall, the constraint and problem that is still often faced is the minimal availability of observed rainfall data spatially as well as temporally; the time series of rainfall data is not long and complete enough; and the number of rainfall stations is less evenly distributed. The methodology consists of carrying out the literature study, collecting as much rainfall data as possible to build a W flow model, then carrying out the model calibration and analyzing the prediction of real-time reservoir inflow for operation. The result shows that the dependable discharge of the Wonogiri watershed shows that there are two peak discharges, which happened on February II (the second half of February) and December II (the second half of December). However, the discharge is decreasing in July and reaching its lowest level in October II (the second half of October). Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۳-۰۹-۰۷-۰۱۵ Full Text: PDF
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :