Enumerating word maps in finite groups
محل انتشار: فصلنامه تئوری گروهی، دوره: 13، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 93
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_THEGR-13-3_007
تاریخ نمایه سازی: 18 فروردین 1403
چکیده مقاله:
We consider word maps over finite groups. An n-variable word w is an element of the free group on n-symbols. For any group G, a word w induces a map from G^n\mapsto G where (g_۱,\ldots,g_n)\mapsto w(g_۱,\ldots,g_n). We observe that many groups have word maps that decompose into components. Such a decomposition facilitates a recursive approach to studying word maps. Building on this observation, and combining it with relevant properties of the word maps, allows us to develop an algorithm to calculate representatives of all the word maps over a finite group. Given these representatives, we can calculate word maps with specific properties over a given group, or show that such maps do not exist. In particular, we have computed an explicit a word on A_۵ such that only generating tuples are nontrivial in its image. We also discuss how our algorithm could be used to computationally address many open questions about word maps. Promising directions of potential applications include Amit's conjecture, questions of chirality and rationality, and the search for multilinear maps over a group. We conclude with open questions regarding these problems.
کلیدواژه ها:
نویسندگان
Bogdan Chlebus
School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
William Cocke
School of Computer and Cyber Sciences, Augusta University, Augusta, GA, USA
Meng-Che Ho
Department of Mathematics, California State University, Northridge, Northridge, CA, USA