Improving Accuracy of Intravoxel Incoherent Motion Reconstruction using Kalman Filter in Combination with Neural Networks: A Simulation Study

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 118

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-14-2_004

تاریخ نمایه سازی: 18 فروردین 1403

چکیده مقاله:

Background: The intravoxel Incoherent Motion (IVIM) model extracts perfusion map and diffusion coefficient map using diffusion-weighted imaging. The main limitation of this model is inaccuracy in the presence of noise. Objective: This study aims to improve the accuracy of IVIM output parameters. Material and Methods: In this simulated and analytical study, the Kalman filter is applied to reject artifact and measurement noise. The proposed method purifies the diffusion coefficient from blood motion and noise, and then an artificial neural network is deployed in estimating perfusion parameters. Results: Based on the T-test results, however, the estimated parameters of the conventional method were significantly different from actual values, those of the proposed method were not substantially different from actual. The accuracy of f and D* also was improved by using Artificial Neural Network (ANN) and their bias was minimized to ۴% and ۱۲%, respectively.  Conclusion: The proposed method outperforms the conventional method and is a promising technique, leading to reproducible and valid maps of D, f, and D*.

کلیدواژه ها:

نویسندگان

Sam Sharifzadeh Javidi

Department of Physics and Medical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran

Reza Ahadi

Department of Anatomy, Medicine School, Iran University of Medical Sciences, Tehran, Iran

Hamidreza Saligheh Rad

Department of Physics and Medical Engineering, Medicine School, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Basser PJ. Inferring microstructural features and the physiological state of ...
  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis ...
  • Le Bihan D. What can we see with IVIM MRI? ...
  • Bley TA, Wieben O, Uhl M. Diffusion-weighted MR imaging in ...
  • Ni X, Wang W, Li X, Li Y, Chen J, ...
  • Huang HM. Reliable estimation of brain intravoxel incoherent motion parameters ...
  • Cheng ZY, Feng YZ, Hu JJ, Lin QT, Li W, ...
  • Beyhan M, Sade R, Koc E, Adanur S, Kantarci M. ...
  • Surer E, Rossi C, Becker AS, Finkenstaedt T, Wurnig MC, ...
  • Stejskal EO, Tanner JE. Spin Diffusion Measurements: Spin Echoes in ...
  • Le Bihan D, Turner R, Douek P, Patronas N. Diffusion ...
  • Turner R, Le Bihan D, Maier J, Vavrek R, Hedges ...
  • Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, ...
  • Hashim E, Yuen DA, Kirpalani A. Reduced Flow in Delayed ...
  • Lévy S, Rapacchi S, Massire A, Troalen T, Feiweier T, ...
  • Federau C, Hagmann P, Maeder P, Muller M, Meuli R, ...
  • Karchevsky M, Babb JS, Schweitzer ME. Can diffusion-weighted imaging be ...
  • Cho GY, Moy L, Zhang JL, Baete S, Lattanzi R, ...
  • Ye C, Xu D, Qin Y, Wang L, Wang R, ...
  • While PT. A comparative simulation study of bayesian fitting approaches ...
  • Iima M, Yano K, Kataoka M, Umehana M, Murata K, ...
  • Javidi SS, Rad HS. Using Kalman Filter to Improve the ...
  • Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud ...
  • Kalman RE. Contributions to the theory of optimal control. Bol ...
  • Weill LR, De Land PN. The Kalman filter: an introduction ...
  • Fusco R, Sansone M, Petrillo A. A comparison of fitting ...
  • Bertleff M, Domsch S, Weingärtner S, Zapp J, O’Brien K, ...
  • Jalnefjord O, Andersson M, Montelius M, Starck G, Elf AK, ...
  • نمایش کامل مراجع