Fractional Chebyshev differential equation on symmetric \alpha dependent interval‎

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-12-2_003

تاریخ نمایه سازی: 28 اسفند 1402

چکیده مقاله:

Most of fractional differential equations are considered on a fixed interval. In this paper, we consider a typical fractional differential equation on a symmetric interval [-\alpha,\alpha], where \alpha is the order of fractional derivative. For a positive real number α we prove that the solutions are  T_{n,\alpha}(x)=(\alpha+x)^\frac{۱}{۲}Q_{n,\alpha}(x) where Q_{n,\alpha}(x) produce a family of orthogonal polynomials with respect to the weight functionw_\alpha(x)=(\frac{\alpha+x}{\alpha-x})^{\frac{۱}{۲}} on [-\alpha,\alpha]. For integer case \alpha = ۱ , we show that these polynomials coincide with classical Chebyshev polynomials of the third kind. Orthogonal properties of the solutions lead to practical results in determining solutions of some fractional differential equations.

کلیدواژه ها:

Orthogonal polynomials ، Fractional Chebyshev differential equation ، Riemann-Liouville and Caputo derivatives

نویسندگان

Zahra Kavooci

Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.

Kazem Ghanbari

Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.

Hanif Mirzaei

Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.