Fractional Chebyshev differential equation on symmetric \alpha dependent interval
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-12-2_003
تاریخ نمایه سازی: 28 اسفند 1402
چکیده مقاله:
Most of fractional differential equations are considered on a fixed interval. In this paper, we consider a typical fractional differential equation on a symmetric interval [-\alpha,\alpha], where \alpha is the order of fractional derivative. For a positive real number α we prove that the solutions are T_{n,\alpha}(x)=(\alpha+x)^\frac{۱}{۲}Q_{n,\alpha}(x) where Q_{n,\alpha}(x) produce a family of orthogonal polynomials with respect to the weight functionw_\alpha(x)=(\frac{\alpha+x}{\alpha-x})^{\frac{۱}{۲}} on [-\alpha,\alpha]. For integer case \alpha = ۱ , we show that these polynomials coincide with classical Chebyshev polynomials of the third kind. Orthogonal properties of the solutions lead to practical results in determining solutions of some fractional differential equations.
کلیدواژه ها:
Orthogonal polynomials ، Fractional Chebyshev differential equation ، Riemann-Liouville and Caputo derivatives
نویسندگان
Zahra Kavooci
Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.
Kazem Ghanbari
Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.
Hanif Mirzaei
Faculty of Sciences, Sahand University of Technology, Tabriz, Iran.