Lie symmetry analysis for computing invariant manifolds associated with equilibrium solutions

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 76

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-12-2_005

تاریخ نمایه سازی: 28 اسفند 1402

چکیده مقاله:

We present a novel computational approach for computing invariant manifolds that correspond to equilibrium solutions of nonlinear parabolic partial differential equations (or PDEs). Our computational method combines Lie symmetry analysis with the parameterization method. The equilibrium solutions of PDEs and the solutions of eigenvalue problems are exactly obtained. As the linearization of the studied nonlinear PDEs at equilibrium solutions yields zero eigenvalues, these solutions are non-hyperbolic, and some invariant manifolds are center manifolds. We use the parameterization method to model the infinitesimal invariance equations that parameterize the invariant manifolds. We utilize Lie symmetry analysis to solve the invariance equations. We apply our framework to investigate the Fisher equation and the Brain Tumor growth differential equation.

نویسندگان

Akbar Dehghan Nezhad

School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran, Iran.

Mina Moghaddam Zeabadi

School of Mathematics and Computer Science, Iran University of Science and Technology, Narmak, Tehran, Iran.