Improvement of the Gr\"{u}ss type inequalities for positive linear maps on C^{*}-algebras

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 127

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CJMS-12-1_008

تاریخ نمایه سازی: 28 اسفند 1402

چکیده مقاله:

Assume that A and B areunital C^{*}-algebras and \varphi:A\rightarrow B is a unitalpositive linear map. We show that if B is commutative, then forall x,y \in A and \alpha, \beta \in \mathbb{C}\begin{align*}|\varphi(xy)-\varphi(x)\varphi(y)| \leq & \left[\varphi(|x^{*}-\alpha ۱_{A}|^{۲})\right]^{\frac{۱}{۲}}\left[\varphi(|y-\beta۱_{A}|^{۲})\right]^{\frac{۱}{۲}} \\ & - |\varphi(x^{*}-\alpha ۱_{A})||\varphi(y-\beta۱_{A})|.\end{align*}Furthermore, we prove that if z\in Awith |z| =۱ and \lambda, \mu \in \mathbb{C} are such thatRe(\varphi((x^{*}-\bar{\beta}z^{*})(\alpha z-x)))\geq ۰ andRe(\varphi((y^{*}-\bar{\mu}z^{*})(\lambda z-y)))\geq ۰, then\begin{center}|\varphi(x^{*}y)-\varphi(x^{*}z)\varphi(z^{*}y)| \leq \frac{۱}{۴}| \beta-\alpha | | \mu-\alpha | - \\ \left[ Re(\varphi((x^{*}-\bar{\beta}z^{*})(\alpha z-x)))\right]^{\frac{۱}{۲}}\left[ Re(\varphi((y^{*}-\bar{\mu}z^{*})(\lambdaz-y)))\right] ^{\frac{۱}{۲}}.\end{center}The presented bounds for the Gr\"{u}ss type inequalities on C^{*}-algebras improve the other ones in the literature under mild conditions. As an application, using our results, we give some inequalities in L^{\infty}(\left[a,b\right]), which refine the other ones in the literature.

نویسندگان

Fatemeh Golfarshchi

Tabriz Islamic Art University

Ali Asghar Khalilzadeh

Department of Mathematics, Sahand University of Technology, Tabriz, Iran

Feridoon Moradlou

Department of Mathematics Sahand University of Technology