Application of The Sine-Gordon Expansion Method on Nonlinear Various Physical Models
محل انتشار: مجله علوم ریاضی کاسپین، دوره: 12، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJMS-12-1_005
تاریخ نمایه سازی: 28 اسفند 1402
چکیده مقاله:
In this paper, by utilizing the Sine-Gordan expansion method, soliton solutions of the higher-order improved Boussinesq equation, Kuramoto-Sivashinsky equation, and seventh-order Sawada-Kotera equation are obtained. Given partial differential equations are reduced to ordinary differential equations, by choosing the compatible wave transformation associated with the structure of the equation. Based on the solution of the Sine-Gordan equation, a polynomial system of equations is obtained according to the principle of homogeneous balancing. The solution of the outgoing system gives the parameters which are included by the solution. Plot۳d and Plot۲d graphics are given in detail. As a result, many different graphic models are obtained from soliton solutions of equations that play a very important role in mathematical physics and engineering.
کلیدواژه ها:
The Sine-Gordon Expansion Method ، Travelling Wave Solution ، Nonlinear equations ، Higher-Order Boussinesq equation
نویسندگان
Sait San
Mathematics and Computer Department, Science and Letters Faculty, Osmangazi University, Eskisehir, Turkey
Bahri Koc
Eskişehir Osmangazi University
Sukri Khareng
Eskişehir Osmangazi University