A non-monotone Hestenes-Stiefel conjugate gradient algorithm for nonsmooth convex optimization

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-3_002

تاریخ نمایه سازی: 17 اسفند 1402

چکیده مقاله:

Here, we propose a practical method for solving nonsmooth convex problems by using conjugate gradient-type methods. The conjugate gradient method is one of the most remarkable methods to solve smooth and large-scale optimization problems. As a result of this fact, We present a modified HS conjugate gradient method. In the case that we have a nonsmooth convex problem, by the Moreau-Yosida regularization, we convert the nonsmooth objective function to a smooth function and then we use our method, by making use of a nonmonotone line search, for solving a nonsmooth convex optimization problem. We prove that our algorithm converges to an optimal solution under standard condition. Our algorithm inherits the performance of HS conjugate gradient method.

نویسندگان

Ahmad Abouyee Mehrizi

Faculty of Mathematical Sciences, Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Reza Ghanbari

Faculty of Mathematical Sciences, Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Al-Baali, Y. Narushima, and H. Yabe, A family of ...
  • K. Amini, M. Ahookhosh, and H. Nosratipour, An inexact line ...
  • A. Astorino, A. Fuduli, and E. Gorgone, Nonsmoothness in classification ...
  • A. Auslender, Numerical methods for nondifferentiable convex optimization, Math. Programm. ...
  • S. Babaie-Kafaki and R. Ghanbari, The Dai–Liao nonlinear conjugate gradient ...
  • A.M. Bagirov, L. Jin, N. Karmitsa, A.Al. Nuaimat, and N. ...
  • A.M. Bagirov, B. Karasozen, and M. Sezer, Discrete gradient method: ...
  • A. Bagirov, N. Karmitsa, and M.M. Makela, Introduction to Nonsmooth ...
  • P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian, Mathematical programming for ...
  • J.V. Burke, A.S. Lewis, and M.L. Overton, A robust gradient ...
  • J.V. Burke and M. Qian, On the superlinear convergence of ...
  • E. Carrizosa and D.R. Morales, Supervised classification and mathematical optimization, ...
  • X. Chen and M. Fukushima, Proximal quasi-Newton methods for nondifferentiable ...
  • W.Y. Cheng, A two-term PRP based descent method, Numer. Funct. ...
  • A. Conn, N. Gould, and P. Toint, Trust Region Methods, ...
  • Y.H. Dai, Convergence properties of the BFGS algorithm, SIAM J. ...
  • Y.H. Dai and L.Z. Liao, New conjugacy conditions and related ...
  • M. Fukushima and L. Qi, A globally and superlinearly convergent ...
  • N.I.M. Gould, C. Sainvitu, and P.L. Toint, A filter-trust-region method ...
  • W.W. Hager and H. Zang, A survey of the nonlinear ...
  • P. Hansen and B. Jaumard, Cluster analysis and mathematical programming, ...
  • J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, ...
  • A. Jain, M. Murty, and P. Flynn, Data clustering: A ...
  • T. Karkkainen and E. Heikkola, Robust formulations for training multilayer ...
  • T. Karkkainen and K. Majava, Semi-adaptive, convex optimization methodology for ...
  • N. Karmitsa, Diagonal bundle method for nonsmooth Sparse optimization, J. ...
  • N. Karmitsa and M.M. Makela, Adaptive limited memory bundle method ...
  • Q. Li, Conjugate gradient type methods for the nondifferentiable convex ...
  • S. Lu, Z. Wei, and L. Li, A trust region ...
  • M.M. Makela and T. Mannikko, Numerical solution of nonsmooth optimal ...
  • M. M. Makela, T. Mannikko, and H. Schramm, H Application ...
  • M. Mehiddin Al-Baali, E. Spedicato, and F. Maggioni, Broyden’s quasi-Newton ...
  • K. Miettinen, M.M. Makela, and T. Mannikko, Optimal control of ...
  • E.S. Mistakidis and G.E. Stavroulakis, Nonconvex Optimization in Mechanics: Smooth ...
  • J.J. Moreau, P.D. Panagiotopoulos, and G. Strang, Topics in Nonsmooth ...
  • Y. Narushima, H. Yabe, and J.A. Ford, A three-term conjugate ...
  • A. Nedic and A. Ozdaglar, Subgradient methods for saddle-point problems, ...
  • Y.U. Nesterov, Excessive gap technique in nonsmooth convex minimization, SIAM ...
  • Y.U. Nesterov, Smooth minimization of nonsmooth functions, Math. Programm. ۱۰۳ ...
  • Y.U. Nesterov, Primal-dual subgradient methods for convex problems, Math. Programm. ...
  • J. Outrata, M. Kocvara, and J. Zowe, Nonsmooth Approach to ...
  • A.I. Rauf and M. Fukushima, Global convergent BFGS method for ...
  • N. Sagara and M. Fukushima, A trust region method for ...
  • C. Sagastizabal and M. Solodov, An infeasible bundle method for ...
  • H. Schramm and J. Zowe, A version of the bundle ...
  • K. Sugiki, Y. Narushima, and H. Yabe, Globally convergent three-term ...
  • W. Sun, Nonmonotone trust region method for solving optimization problems, ...
  • I.H. Witten and E. Frank, Data mining: Practical Machine Learning ...
  • H. Yabe, H. Ogasawara, and M. Yoshino, Local and superlinear ...
  • G. Yuan, Z. Weia, and G.A. Li, Modified Polak–Ribiere–Polyak conjugate ...
  • J.Z. Zhang, N.Y. Deng, and L.H. Chen, New Quasi-Newton equation ...
  • L. Zhang, W. Zhou, and D.H. Li, A descent modified ...
  • L. Zhang, W. Zhou, and D.H. Li, Global convergence of ...
  • نمایش کامل مراجع