Characterization of semi-continuity in L^{p}-spaces

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MACA-5-3_006

تاریخ نمایه سازی: 13 اسفند 1402

چکیده مقاله:

Upper and lower semi-continuous functions are important in many areas and play a key role in optimization theory. This paper characterizes the lower and upper semi-continuity of L^{p}-space functions. We prove that a function \vartheta:\mathcal L\rightarrow \overline{\mathbb R} is lower semi-continuous if and only if each convergent Moore-Smith sequence  \{q_{j}\}_{j\in \mathbb N} converging to q\in \mathcal L implies that \int_{\mathcal L} \vartheta(q)d\mu\leq\liminf \int_{\mathcal L}\vartheta(q_{j})d\mu, \forall q\in \mathcal L. We further show that the sum of any two proper lower semi-continuous functions is lower semi-continuous and the product of a lower semi-continuous function by a positive scalar gives a lower semi-continuous function and the case of upper semi-continuous functions follows analogously. Additionally, we prove that for a function in an L^p-space L if \vartheta(\varphi)=\int_{\mathcal L}\varphi d\mu such that \varphi is measurable with respect to a Borel measure \mu, then \vartheta is upper semi-continuous.

نویسندگان

Samwel Asamba

Department of Pure and Applied Mathematics, Kisii University, Box ۴۰۸-۴۰۲۰۰, Kisii-Kenya

Benard Okelo

Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Box ۲۱۰-۴۰۶۰۱, Bondo, Kenya

Robert Obogi

Department of Pure and Applied Mathematics, Kisii University, Box ۴۰۸-۴۰۲۰۰, Kisii, Kenya

Priscah Omoke

Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Box ۲۱۰-۴۰۶۰۱, Bondo, Kenya

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Beer, Upper semicontinuous functions and the Stone approximation theorem, ...
  • Y. Chen, Y. Cho, and L. Yang Note on the ...
  • E. Chong and S. Zak, An Introduction to Optimization, Fourth ...
  • R. Correa and A. Hantoute, Lower semicontinuous convex relaxation in ...
  • R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, ...
  • F. Gool, Lower semicontinuous functions With values in a continuous ...
  • E. Hernandez and R. Lopez, A new notion of semi-continuity ...
  • B. Jordan, Semicontinuous Functions and Convexity, University of Toronto, ۲۰۱۴ ...
  • E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and ...
  • P. Kumlin, A Note on Lp Spaces, Functional Analysis Lecture ...
  • A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Systems ...
  • A. Mirmostafaee, Points of upper and Lower semicontinuity of multivalued ...
  • E. Montefusco, Lower semi-continuity of functionals via the concentration-compactness principle, ...
  • J. Moreau, Convexity and Duality in Functional Analysis and Optimization, ...
  • N. B. Okelo, On Certain Conditions for Convex Optimization in ...
  • S. Varagona, Inverse limits with upper semicontinuous bonding functions and ...
  • Z. Wu, Uniform convergence theorems motivated by Dini’s theorem for ...
  • نمایش کامل مراجع