رویکردی نوین در بکارگیری روش دسته ماشین بردار پشتیبان تصادفی در تحلیل داده های بیان ژن سرطان پروستات
محل انتشار: مجله علوم آماری، دوره: 17، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 147
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_STAT-17-2_009
تاریخ نمایه سازی: 7 اسفند 1402
چکیده مقاله:
پیشرفت سرطان در بین بیماران را می توان از طریق ایجاد مجموعه ای از نشانگرهای ژن با روش های تحلیل آماری داده ها بررسی کرد. اما یکی از مشکلات اساسی در مطالعه آماری این نوع داده ها وجود تعداد زیاد ژن ها در مقابل تعداد کم نمونه هاست. بنابراین، استفاده از روش های کاهش ابعاد برای حذف و یافتن تعداد بهینه ای از ژن ها برای پیش بینی صحیح رده های موردنظر، امری ضروری است. از طرفی، انتخاب یک روش کاهش ابعاد مناسب، می تواند به استخراج اطلاعات ارزشمند و افزایش کارایی یادگیری کمک کند. در این پژوهش از رویکرد یادگیری دسته ای به نام دسته ماشین بردار پشتیبان تصادفی برای یافتن مجموعه ویژگی بهینه، استفاده می شود. در تحلیل داده های واقعی مقاله حاضر، نشان داده می شود با تبدیل داده های بعد بالا به زیرفضاهایی با بعد پایین تر و ترکیب مدل های ماشین بردار پشتیبان، علاوه بر یافتن مجموعه ای از ژن های موثر در بروز سرطان پروستات، دقت رده بندی نیز افزایش می یابد.
کلیدواژه ها:
Ensemble learning ، Dimensionality reduction ، Classification ، Random support vector machine cluster ، Optimal feature set. ، یادگیری دسته ای ، کاهش ابعاد ، رده بندی ، دسته ماشین بردار پشتیبان تصادفی ، مجموعه ویژگی بهینه.
نویسندگان
نیلیا موسوی
Tarbiat Modares University
موسی گلعلی زاده
Tarbiat Modares University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :