An Iron-enhanced nanocone assisted drug delivery of Aspirin: DFT assessments
محل انتشار: مجله بین المللی ابعاد نانو، دوره: 14، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJND-14-4_005
تاریخ نمایه سازی: 5 اسفند 1402
چکیده مقاله:
By the importance of customizing appropriate carriers for the specific drugs to approach a successful drug delivery process, the drug delivery of aspirin (ASP) was assessed by the assistance of an iron-enhanced nanocone (FCONE), using density functional theory (DFT) calculations. ASP, CONE, and FCONE models were optimized to be prepared for involving in bimolecular interactions to form ASP@CONE and ASP@FCONE complexes along with re-optimization calculations and vibrational frequency confirmations. Benefits of the enhanced FCONE model were seen for better interacting with the ASP counterpart comparing with the CONE and ASP interactions within the evaluated values of -۲۶.۳۵ and -۱۰.۰۷ kcal/mol for the corrected binding energies to yield a meaningful “recovery time” term. Additionally, the electronic molecular orbital features showed a priority for a better detection of ASP counterpart by the FCONE, in which the variations of energy gap values yielded a meaningful “conductance rate” especially for the ASP@FCONE complex. As a consequence, the recognized models of ASP@CONE and ASP@FCONE complexes were learned by a better advantage of enhanced FCONE model to be worked a s better proposed carrier for the ASP drug delivery process.
کلیدواژه ها:
نویسندگان
Ali Ghasemi Gol
Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
Jafar Akbari
Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
Mehdi Khalaj
Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :