Research on Reliability of Rotary Drill machines

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,458

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IMT01_079

تاریخ نمایه سازی: 30 فروردین 1392

چکیده مقاله:

Blasting operation is one of the most expensive stages in mine extraction. Drilling is a first operation in mine blasting. With regard to production continuity, high capacitance rate and investment in open pit mining, accessing the mining machine during mine operation is necessity. Any type of failure in drilling machines, make stop the correlative machines and finally mining operation. Operation of a drilling system is usually evaluated by experiences and engineering judgments which empirical methods. The aim of this paper is to introduce an approach to evaluate reliability of drilling unit in the open pit mine. The method is based upon using the failure rate time to determine the probability of the failure of an active drilling machine and also the repair rate time to determine the probability of repairing the out of work ones. In this paper, after modeling the probability of the failure and the repairing of the drilling machine in Sarcheshme copper mine in Iran as a stochastic process, the probability of replacing each failed drilling machine with a repaired drill is estimated using Markov Chains theory. Finally, the reliability of drilling unite is evaluated

نویسندگان

M.J Rahimdel

M.Sc. Student of mining engineering, Mining, Petroleum and Geophysics Faculty, Shahrood University of Technology, Shahrood, Iran,

M Ataei

Professor of Mining, Petroleum and Geophysics Faculty, Shahrood University of Technology, Shahrood, Iran,

R Khalokakaei

Professor of Mining, Petroleum and Geophysics Faculty, Shahrood University of Technology, Shahrood, Iran

۰ Hoseinie

Assistant professor, Department of Mining engineering, Hamedan University of Technology, Hamedan, Iran,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :