پیش بینی سرعت متوسط جریان در آبگیر های جانبی با استفاده از پویایی سیالات محاسباتی ، شبکه ی عصبی مصنوعی و برداشت های جریان سنج
محل انتشار: مجله مهندسی منابع آب، دوره: 11، شماره: 38
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 62
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_WEJMI-11-38_011
تاریخ نمایه سازی: 26 بهمن 1402
چکیده مقاله:
یکی از متداول ترین روش های انحراف آب در شبکه های آبیاری و سیستم های زهکشی استفاده از آبگیرهای جانبی می باشد. به علت پیچیدگی پروفیل سرعت در محل جداسازی کانال فرعی از کانال اصلی، اندازه گیری سرعت متوسط جریان در محل آبگیر ها بسیار مشکل می باشد. در این مطالعه با استفاده از شبکه عصبی مصنوعی اقدام به محاسبه ی پروفیل سرعت متوسط در آبگیر ها با کمترین خطا شده است. برای این مدل سازی گام های زیر برداشته شده است، (۱) مدل دینامیک سیالات محاسباتی آبگیر های جانبی در نسبت عرض های کانال فرعی به اصلی مختلف انجام شد و با یک مطالعه ی آزمایشگاهی منتشر شده مقایسه گردید. نتایج حاکی از دقت بالای مدل عددی در مدل سازی پروفیل سرعت آبگیر ها دارند. (۲) با استفاده از مدل دینامیک سیالات محاسباتی، مقدار سرعتی که توسط یک فلومتر فرضی که در وسط مقطع کانال قرار می گیرد، اندازه گیری می شود، در در مقاطع مختلف و نسبت عرض های مختلف کانال فرعی به اصلی استخراج شد. (۳) یک مدل پرسپترون چند لایه طراحی شد که با استفاده از سرعت فلومتری، نسبت عرض کانال فرعی به اصلی و مختصات طولی در راستای کانال فرعی به عنوان خروجی بتواند سرعت متوسط مقطع را به دست آورد. نتایج حاصل نشان می دهد که در کاربرد های عملی استفاده از ترکیب برداشت ها ی فلومتری و مدل شبکه عصبی مصنوعی می تواند در کاهش خطای برآورد سرعت متوسط واقعی آبگیر ها مورد استفاده قرار گیرد.
کلیدواژه ها:
نویسندگان
سهراب کریمی
دانشکده مهندسی عمران دانشگاه سمنان
حجت کرمی
دانشکده مهندسی عمران دانشگاه سمنان
خسرو حسینی
دانشیار گروه مهندسی عمران دانشگاه سمنان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :