ShaFA, a New Microsoft Windows-Based Software for Food Intake Analysis
محل انتشار: فصلنامه تغذیه و امنیت غذایی، دوره: 9، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JNFS-9-1_001
تاریخ نمایه سازی: 25 بهمن 1402
چکیده مقاله:
In food intake studies, converting eaten foods into calories and nutrients and other food components using books and tables of food ingredients is a very time-consuming and error-prone task. ShaFA is new Microsoft Windows-based software for food component derivation of individual and group food intake data. This software is developed using C sharp programming language. Microsoft Access has been used to put the information of ۸۷۹۰ food types and their ۸۵ food components based on the USDA-SR۲۸ in the database of software. The user is capable to search in the database for desired food by the name or special code of the food and select them for each person. Each person’s food intake data can be stored via allocating an exclusive ID. Finally, the user can get a report of the imported data in a new window, and also can get a Microsoft Excel export which can be imported into statistical software such as SPSS and STATA. Each research project data can be stored in a file with the unique extension (ShaFA) which can be opened and edited in any system that its operating system is Microsoft Windows, and has ShaFA software installed on it. This software can provide researchers with valuable information in a short time, especially nutritional epidemiology studies. It can also be used in food industry to extract the information needed to label and complete food information table for a variety of food industry products.
کلیدواژه ها:
نویسندگان
Amrollah Sharifi
Department of Nutrition and Food Hygiene, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :