Enhancing Book and Document Digitization from Videos: A Feature Fusion-Based Approach
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 107
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-3_011
تاریخ نمایه سازی: 21 بهمن 1402
چکیده مقاله:
In an age where preserving knowledge and information from books and documents is crucial, traditional manual scanning methods are tedious and error-prone. It involves a lot of human intervention and, as a result, sometimes results in erroneous digitization, which makes the downstream tasks, such as optical character recognition, difficult. Therefore, innovative techniques are required to be proposed that not only reduce human effort in terms of digitization but also give highly accurate results over the recently proposed state-of-the-art techniques. We proposed a novel computer vision-based algorithm that combines Gray-Level Co-occurrence Matrix (GLCM) features with Thepade's ۱۰-ary texture features (TSBTC) for video frame classification. This hybrid approach significantly enhances frame selection accuracy, ensures high-quality digitization, and accommodates multiple languages and document types. We also proposed a dataset of ۵۴,۰۰۰ diverse images to demonstrate our algorithm's effectiveness in real-world scenarios and compare it to existing methods, making a valuable contribution to document digitization. The proposed dataset can be utilized for several document image analysis tasks.
کلیدواژه ها:
نویسندگان
G. Buddhawar
Computer Science and Engineering Department, Sardar Vallabbhai National Institute of Technology, Surat, Gujarat, India
K. Jariwala
Computer Science and Engineering Department, Sardar Vallabbhai National Institute of Technology, Surat, Gujarat, India
C. Chattopadhyay
School of Computing and Data Sciences, FLAME University, Pune, Maharashtra, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :