New approach based on fuzzy hypergraphs in granular computing (an application to the urban vulnerability assessment)
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 185
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-2_016
تاریخ نمایه سازی: 14 بهمن 1402
چکیده مقاله:
Classifying objects based on the simultaneous impact of various parameters has always been challenging due to heterogeneity, impact conflict, and sometimes parameter uncertainty. The purpose of this study is to provide a method for classifying such data. In the proposed method, fuzzy hypergraphs were used to define the granular structures in order to apply the simultaneous effect of heterogeneous and weighted parameters in the classification. This method has been implemented and validated on Fisher's intuitive research in relation to the classification of iris flowers. Evaluation and comparison of the proposed method with Fisher’s experimental results showed higher efficiency and accuracy in flower classification. The proposed method has been used to assess the seismic risk of ۵۰,۰۰۰ buildings based on ۱۰ heterogeneous parameters. Seismic risk classification showed that more than ۸۸% of buildings were classified, and ۱۲% of buildings that could not be classified due to excessive scatter of parameter values were classified using a very small confidence radius. The results indicate the ability of the proposed method to classify objects with the least similarity and number of effective parameters in classification.
کلیدواژه ها:
نویسندگان
Abdolreza Zarandi Baghini
Department of Mathematics, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran.
Hojat Babaei
Department of Mathematics, Faculty of Science, Kerman Branch, Islamic Azad University Kerman, Iran.
Ramin Tabatabaei Mirhosseini
Department of Civil Engineering, Faculty of Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
Lida Torkzadeh Tabrizi
Department of Mathematics, Faculty of Science, Kerman Branch, Islamic Azad University Kerman, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :