Evaluation of the PSO Metaheuristic Algorithm in Different Types of Sleep Apnea Diagnosis Using RR Intervals
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 13، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 152
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-13-2_006
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Background: Sleep apnea is one of the most common sleep disorders that facilitating and accelerating its diagnosis will have positive results on its future trend. Objective: This study aimed to diagnosis the sleep apnea types using the optimized neural network.Material and Methods: This descriptive-analytical study was done on ۵۰ cases of patients referred to the sleep clinic of Imam Khomeini Hospital in Tehran, including ۱۱ normal, ۱۳ mild, ۱۷ moderate and ۹ severe cases. At the first, the data were pre-processed in three stages, then The Electrocardiogram (ECG) signal was decomposed to ۸ levels using wavelet transform convert and ۶ nonlinear features for the coefficients of this level and ۱۰ features were calculated for RR Intervals. For apnea categorizing classes, the multilayer perceptron neural network was used with the backpropagation algorithm. For optimizing Multi-layered Perceptron (MLP) weights, the Particle Swarm Optimization (PSO) evolutionary optimization algorithm was used. Results: The simulation results show that the accuracy criterion in the MLP network is allied with the Backpropagation (BP) training algorithm for different types of apnea. By optimizing the weights in the MLP network structure, the accuracy criterion for modes normal, obstructive, central, mixed was obtained %۹۶.۸۶, %۹۷.۴۸, %۹۶.۲۳, and %۹۶.۴۴, respectively. These values indicate the strength of the evolutionary algorithm in improving the evaluation criteria and network accuracy. Conclusion: Due to the growth of knowledge and the complexity of medical decisions in the diagnosis of the disease, the use of artificial neural network algorithms can be useful to support this decision.
کلیدواژه ها:
نویسندگان
Zeinab Kohzadi
Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
Reza Safdari
Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
Khosro Sadeghniiat Haghighi
Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :