سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Evaluation of the PSO Metaheuristic Algorithm in Different Types of Sleep Apnea Diagnosis Using RR Intervals

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 122

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-13-2_006

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله Evaluation of the PSO Metaheuristic Algorithm in Different Types of Sleep Apnea Diagnosis Using RR Intervals

Background: Sleep apnea is one of the most common sleep disorders that facilitating and accelerating its diagnosis will have positive results on its future trend. Objective: This study aimed to diagnosis the sleep apnea types using the optimized neural network.Material and Methods: This descriptive-analytical study was done on 50 cases of patients referred to the sleep clinic of Imam Khomeini Hospital in Tehran, including 11 normal, 13 mild, 17 moderate and 9 severe cases. At the first, the data were pre-processed in three stages, then The Electrocardiogram (ECG) signal was decomposed to 8 levels using wavelet transform convert and 6 nonlinear features for the coefficients of this level and 10 features were calculated for RR Intervals. For apnea categorizing classes, the multilayer perceptron neural network was used with the backpropagation algorithm. For optimizing Multi-layered Perceptron (MLP) weights, the Particle Swarm Optimization (PSO) evolutionary optimization algorithm was used. Results: The simulation results show that the accuracy criterion in the MLP network is allied with the Backpropagation (BP) training algorithm for different types of apnea. By optimizing the weights in the MLP network structure, the accuracy criterion for modes normal, obstructive, central, mixed was obtained %96.86, %97.48, %96.23, and %96.44, respectively. These values indicate the strength of the evolutionary algorithm in improving the evaluation criteria and network accuracy.  Conclusion: Due to the growth of knowledge and the complexity of medical decisions in the diagnosis of the disease, the use of artificial neural network algorithms can be useful to support this decision.

کلیدواژه های Evaluation of the PSO Metaheuristic Algorithm in Different Types of Sleep Apnea Diagnosis Using RR Intervals:

نویسندگان مقاله Evaluation of the PSO Metaheuristic Algorithm in Different Types of Sleep Apnea Diagnosis Using RR Intervals

Zeinab Kohzadi

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Reza Safdari

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran

Khosro Sadeghniiat Haghighi

Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
Gillberg M, Kecklund G, Åkerstedt T. Relations between performance and ...
Chung KF. Use of the Epworth Sleepiness Scale in Chinese ...
Mendez MO, Bianchi AM, Matteucci M, Cerutti S, Penzel T. ...
Kapsimalis F, Kryger MH. Gender and obstructive sleep apnea syndrome, ...
Young T, Evans L, Finn L, Palta M. Estimation of ...
Jennum P, Sjol A. Epidemiology of snoring and obstructive sleep ...
Saddki N, Mohamad H, Yusof NI, Mohamad D, Mokhtar N, ...
Sin DD, Fitzgerald F, Parker JD, Newton G, Floras JS, ...
Schröder CM, O’Hara R. Depression and obstructive sleep apnea (OSA). ...
Gutta S, Cheng Q, Nguyen HD, Benjamin BA. Cardiorespiratory model-based ...
Varon C, Van Huffel S. Complexity and nonlinearities in cardiorespiratory ...
Chen L, Zhang X, Song C. An automatic screening approach ...
Song C, Liu K, Zhang X, Chen L, Xian X. ...
Hwang SH, Lee YJ, Jeong DU, Park KS. Apnea–hypopnea index ...
Dong Z, Li X, Chen W. Frequency network analysis of ...
Yoon H, Hwang SH, Choi J-W, Lee YJ, Jeong D-U, ...
Chandrakar B, Yadav OP, Chandra VK. A survey of noise ...
Mbachu CB, Offor KJ. Reduction of power line noise in ...
Zhu H, Dong J. An R-peak detection method based on ...
Walnut DF. An introduction to wavelet analysis. Springer Science & ...
Bsoul M, Minn H, Tamil L. Apnea MedAssist: real-time sleep ...
Kurt I, Ture M, Kurum AT. Comparing performances of logistic ...
Xu L, Chen WJ. Artificial neural network short-term electrical load ...
Raghu S, Sriraam N. Optimal configuration of multilayer perceptron neural ...
Hornik K, Stinchcombe M, White H. Universal approximation of an ...
Panchul AV. A fuzzy logic approach to load balancing in ...
Masters T. Practical neural network recipes in C++. Morgan Kaufmann; ...
Eberhart R, Kennedy J. A new optimizer using particle swarm ...
Valdez F, Melin P. Neural network optimization with a hybrid ...
Pant M, Thangaraj R, Abraham A. A new PSO algorithm ...
Abraham A. Meta learning evolutionary artificial neural networks. Neurocomputing. ۲۰۰۴;۵۶:۱-۳۸. ...
Abraham A. Optimization of evolutionary neural networks using hybrid learning ...
Hassan AR, Haque MA. An expert system for automated identification ...
Wang L, Lin Y, Wang J. A RR interval based ...
نمایش کامل مراجع