Advanced Diagnostic Technique for Alzheimer’s Disease using MRI Top-Ranked Volume and Surface-based Features
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 12، شماره: 6
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 93
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-12-6_004
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Background: Alzheimer’s disease (AD) is the most dominant type of dementia that has not been treated completely yet. Few Alzheimer‘s patients are correctly diagnosed on time. Therefore, diagnostic tools are needed for better and more efficient diagnoses. Objective: This study aimed to develop an efficient automated method to differentiate Alzheimer’s patients from normal elderly and present the essential features with accurate Alzheimer’s diagnosis.Material and Methods: In this analytical study, ۱۵۴ Magnetic Resonance Imaging (MRI) scans were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, preprocessed, and normalized by the head size for extracting features (volume, cortical thickness, Sulci depth, and Gyrification Index Features (GIF). Relief-F algorithm, t-test, and one way-ANOVA were used for feature ranking to obtain the most effective features representing the AD for the classification process. Finally, in the classification step, four classifiers were used with ۱۰ folds cross-validation as follows: Gaussian Support Vector Machine (GSVM), Linear Support Vector Machine (LSVM), Weighted K-Nearest Neighbors (W-KNN), and Decision Tree algorithm. Results: The LSVM classifier and W-KNN produce a testing accuracy of ۱۰۰% with only seven features. Additionally, GSVM and decision tree produce a testing accuracy of ۹۷.۸۳% and ۹۳.۴۸%, respectively. Conclusion: The proposed system represents an automatic and highly accurate AD detection with a few reliable and effective features and minimum time.
کلیدواژه ها:
نویسندگان
- -
MSc, Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt
- -
PhD, Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt
- -
PhD, Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :