Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 12، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-12-2_007
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Background: Motor Imagery (MI) Brain Computer Interface (BCI) directly links central nervous system to a computer or a device. Most MI-BCI structures rely on features of a single channel of Electroencephalogram (EEG). However, to provide more valuable features, the relationships among EEG channels in the form of effective brain connectivity analysis must be considered. Objective: This study aims to identify a set of robust and discriminative effective connectivity features from EEG signals and to develop a hierarchical machine learning structure for discrimination of left and right hand MI task effectively.Material and Methods: In this analytical study, we estimated effective connectivity using Granger Causality (GC) methods namely, Generalized Partial Directed Coherence (GPDC), Directed Transfer Function (DTF) and direct Directed Transfer Function (dDTF). These measures determine the transient causal relation between different brain areas. Then a feature subset selection method based on Kruskal–Wallis test was performed to choose most significant directed causal connection between channels. Moreover, the minimal-redundancy-maximal-relevance feature selection method is applied to discard non-significance features. Finally, support vector machine method is used for classification. Results: The maximum value of the classification accuracies using GC methods over different frequency bands in ۲۹ subjects in ۶۰ trial is approximately ۸۴% in Mu (۸−۱۲ Hz) - Beta۱ (۱۲−۱۵ Hz) frequency band using GPDC method. Conclusion: This new hierarchical automated BCI system could be applied for discrimination of left and right hand MI tasks from EEG signal, effectively.
کلیدواژه ها:
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :