Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 103

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-12-2_007

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Motor Imagery (MI) Brain Computer Interface (BCI) directly links central nervous system to a computer or a device. Most MI-BCI structures rely on features of a single channel of Electroencephalogram (EEG). However, to provide more valuable features, the relationships among EEG channels in the form of effective brain connectivity analysis must be considered. Objective: This study aims to identify a set of robust and discriminative effective connectivity features from EEG signals and to develop a hierarchical machine learning structure for discrimination of left and right hand MI task effectively.Material and Methods: In this analytical study, we estimated effective connectivity using Granger Causality (GC) methods namely, Generalized Partial Directed Coherence (GPDC), Directed Transfer Function (DTF) and direct Directed Transfer Function (dDTF). These measures determine the transient causal relation between different brain areas. Then a feature subset selection method based on Kruskal–Wallis test was performed to choose most significant directed causal connection between channels. Moreover, the minimal-redundancy-maximal-relevance feature selection method is applied to discard non-significance features. Finally, support vector machine method is used for classification. Results: The maximum value of the classification accuracies using GC methods over different frequency bands in ۲۹ subjects in ۶۰ trial is approximately ۸۴% in Mu (۸−۱۲ Hz) - Beta۱ (۱۲−۱۵ Hz) frequency band using GPDC method. Conclusion: This new hierarchical automated BCI system could be applied for discrimination of left and right hand MI tasks from EEG signal, effectively.

نویسندگان

- -

PhD, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

- -

PhD, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • McFarland DJ, Wolpaw JR. Brain-computer interface operation of robotic and ...
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. ...
  • Finke A, Lenhardt A, Ritter H. The MindGame: a P۳۰۰-based ...
  • Millán Jdel R, Renkens F, Mouriño J, Gerstner W. Noninvasive ...
  • Shalbaf A, Saffar M, Sleigh JW, Shalbaf R. Monitoring the ...
  • Afshani F, Shalbaf A, Shalbaf R, Sleigh J. Frontal-temporal functional ...
  • Shalbaf A, Shalbaf R, Saffar M, Sleigh J. Monitoring the ...
  • Kim C, Sun J, Liu D, Wang Q, Paek S. ...
  • Bascil MS, Tesneli AY, Temurtas F. Spectral feature extraction of ...
  • Athif M, Ren H. WaveCSP: a robust motor imagery classifier ...
  • Shalbaf A, Maghsoudi A. Mental Arithmetic Task Recognition Using Effective ...
  • Mahmoudi M, Shamsi M. Multi-class EEG classification of motor imagery ...
  • Park SH, Lee D, Lee SG. Filter Bank Regularized Common ...
  • Shin Y, Lee S, Lee J, Lee HN. Sparse representation-based ...
  • Sreeja SR, Samanta D, Sarma M. Weighted sparse representation for ...
  • Sun HW, Fu YF, Xiong X, Yang J, Liu CW, ...
  • Park C, Looney D, Naveed R, Ahrabian A, Mandic DP. ...
  • Zheng Y, Xu G. Quantifying mode mixing and leakage in ...
  • Boostani R, Moradi MH. A new approach in the BCI ...
  • Rodríguez-Bermúdez G, García-Laencina PJ. Automatic and adaptive classification of electroencephalographic ...
  • Lang EW, Tomé AM, Keck IR, Górriz-Sáez JM, Puntonet CG. ...
  • Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. ...
  • García-Laencina PJ, Rodríguez-Bermudez G, Roca-Dorda J. Exploring dimensionality reduction of ...
  • Ince NF, Arica S, Tewfik A. Classification of single trial ...
  • Ruan J, Wu X, Zhou B, Guo X, Lv Z. ...
  • Asensio-Cubero J, Gan JQ, Palaniappan R. Multiresolution analysis over graphs ...
  • Bhattacharyya S, Sengupta A, Chakraborti T, Konar A, Tibarewala DN. ...
  • Miao M, Wang A, Liu F. A spatial-frequency-temporal optimized feature ...
  • Kirar JS, Agrawal RK. Relevant Feature Selection from a Combination ...
  • Schlögl A, Lee F, Bischof H, Pfurtscheller G. Characterization of ...
  • Subasi A, Erçelebi E. Classification of EEG signals using neural ...
  • Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. ...
  • Gupta G, Bhatnagar M, Ghosh S, Sinha R. Design of ...
  • Arvaneh M, Guan C, Ang KK, Quek C. Optimizing the ...
  • Siuly S, Li Y. Improving the separability of motor imagery ...
  • Al-Faiz MZ, Al-hamadani AA. Implementation of EEG signal processing and ...
  • Rodrigues PG, Filho CAS, Attux R, Castellano G, Soriano DC. ...
  • He L, Hu D, Wan M, Wen Y, Von Deneen ...
  • Sinha RK, Ghosh S. Jaya based ANFIS for monitoring of ...
  • Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM. ...
  • Hsu WY. Enhancing the performance of motor imagery EEG classification ...
  • Miao M, Zeng H, Wang A, Zhao C, Liu F. ...
  • Jin Z, Zhou G, Gao D, Zhang Y. EEG classification ...
  • Jiao Y, Zhang Y, Chen X, Yin E, Jin J, ...
  • Tabar YR, Halici U. A novel deep learning approach for ...
  • Lu N, Li T, Ren X, Miao H. A Deep ...
  • Zhang Z, Duan F, Sole-Casals J, Dinares-Ferran J, Cichocki A, ...
  • Shin J, von Luhmann A, Blankertz B, Kim DW, Jeong ...
  • Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, ...
  • Granger CW. Investigating causal relations by econometric models and cross-spectral ...
  • Geweke JF. Measures of conditional linear dependence and feedback between ...
  • Baccalá LA, Sameshima K. Partial directed coherence: a new concept ...
  • Baccala LA, Sameshima K, Takahashi DY. Generalized partial directed coherence ...
  • Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S. ...
  • Kamiński M, Ding M, Truccolo WA, Bressler SL. Evaluating causal ...
  • Mullen T, Delorme A, Kothe C, Makeig S. An electrophysiological ...
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for ...
  • Spurrier JD. On the null distribution of the Kruskal–Wallis statistic. ...
  • Ding C, Peng H. Minimum redundancy feature selection from microarray ...
  • Peng H, Long F, Ding C. Feature selection based on ...
  • Bertsekas DP. Nonlinear programming. Journal of the Operational Research Society. ...
  • Neuper C, Pfurtscheller G. Evidence for distinct beta resonance frequencies ...
  • Wolpaw JR, McFarland DJ, Vaughan TM. Brain-computer interface research at ...
  • نمایش کامل مراجع