Relation Extraction of Protein Complexes from Dynamic Protein-Protein Interaction Network

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 112

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-11-6_002

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Dynamic protein-protein interaction networks (DPPIN) can confirm the conditional and temporal features of proteins and protein complexes. In addition, the relation of protein complexes in dynamic networks can provide useful information in understanding the dynamic functionality of PPI networks. Objective: In this paper, an algorithm is presented to discover the temporal association rule from the dynamic PPIN dataset.Material and Methods: In this analytical study, the static protein-protein interaction network is transformed into a dynamic network using the gene expression thresholding to extract the protein complex relations. The number of presented proteins of the dynamic network is large at each time point. This number will increase for extraction of multidimensional rules at different times. By mapping the gold standard protein complexes as reference protein complexes, the number of items decreases from active proteins to protein complexes at each transaction. Extracted sub graphs as protein complexes, at each time point, are weighted according to the reference protein complexes similarity degrees. Mega-transactions and extended items are created based on occurrence bitmap matrix of the reference complexes. Rules will be extracted based on Mega-transactions of protein complexes. Results: The proposed method has been evaluated using gold standard protein complex rules. The amount of extracted rules from Biogrid datasets and protein complexes are ۲۸۱, with support ۰.۲. Conclusion: The characteristic of the proposed algorithm is the simultaneous extraction of intra-transaction and inter-transaction rules. The results evaluation using EBI data shows the efficiency of the proposed algorithm.

نویسندگان

- -

PhD, Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran

- -

PhD, Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran

- -

PhD, Department of Computer and Electrical Engineering, University of Kashan, Kashan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zaman E. Disease Similarity Using Biological Module Dysregulation Profile. North ...
  • Taheri G, Habibi M, Wong L, Eslahchi C. Disruption of ...
  • Shen X, Yi L, Jiang X, He T, Hu X, ...
  • Zhang Y, Du N, Li K, Feng J, Jia K, ...
  • Morra G, Genoni A, Colombo G. Protein dynamics and drug ...
  • Mallik S, Mukhopadhyay A, Maulik U. RANWAR: rank-based weighted association ...
  • Wani G, Joshi M. Quantitative estimation of time interval of ...
  • Lu H, Han J, Feng L. Stock movement prediction and ...
  • Nam H, Lee K, Lee D. Identification of temporal association ...
  • Zakaria W, Kotb Y, Ghaleb F. MCR-Miner: Maximal confident association ...
  • Nacher JC, Schwartz JM. Modularity in protein complex and drug ...
  • Ray S, Hossain A, Maulik U. Disease associated protein complex ...
  • Moarefi I. Protein Complex Production from the Drug Discovery Standpoint. ...
  • Jin H, Chen J, He H, Williams GJ, Kelman C, ...
  • Steinway SN, Wang RS, Albert R. Discrete dynamic modeling: a ...
  • Besemann C, Denton A, Yekkirala A. Differential association rule mining ...
  • Gallo CA, Carballido JA, Ponzoni I. Discovering time-lagged rules from ...
  • Chen SC, Tsai TH, Chung CH, Li WH. Dynamic association ...
  • Mohammadi-Jenghara M, Ebrahimpour-Komleh H. Extraction of Co-Behaving Genes by Similarity ...
  • Zhou A, Zhou S, Jin W, Tian Z. Generalized multidimensional ...
  • Lee AJ, Wang CS, Weng WY, Chen YA, Wu HW. ...
  • Tung AK, Lu H, Han J, Feng L. Breaking the ...
  • Li Q, Feng L, Wong A. From intra-transaction to generalized ...
  • Baralis E, Bruno G, Ficarra E. Temporal association rules for ...
  • Jenghara MM, Ebrahimpour-Komleh H, Parvin H. Dynamic protein–protein interaction networks ...
  • Wang J, Peng X, Li M, Luo Y, Pan Y. ...
  • Agrawal R, Srikant R. Fast algorithms for mining association rules. ...
  • Chatr-Aryamontri A, Oughtred R, Boucher L, et al. The BioGRID ...
  • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI ...
  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, et al. ...
  • Rustici G, Mata J, Kivinen K, Lió P, Penkett CJ, ...
  • Cook CE, Bergman MT, Cochrane G, Apweiler R, Birney E. ...
  • Dolinski K, Dwight SS, Eppig JT, Harris MA, et al. ...
  • Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, et al. ...
  • نمایش کامل مراجع