A New Automatic QT-Interval Measurement Method for Wireless ECG Monitoring System Using Smartphone

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 109

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-11-5_010

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

QT-interval prolongation is an important parameter for heart arrhythmia diagnosis. It is the time interval from QRS-onset to the T-end of electrocardiogram (ECG). Manual measurement of QT-interval, especially for ۱۲-leads ECG, is time-consuming. Hence, an automatic QT-interval measurement is necessary. A new method for automatic QT-interval measurement is presented in this paper, which mainly consists of three parts, including QRS-complex detection, determination of QRS-onset, and T-end determination. The QRS-complex detection is based on the modified Pan-Tompkins algorithm. The T-end is defined based on Region of Interest (ROI) maximum limit. We compare and test our proposed QT-interval measurement method with reference measurement in term of correlation coefficient and range of ۹۵% LoA. The correlation coefficient and the range of ۹۵% LoA are ۰.۵۷۵ and ۰.۲۹۰, respectively. The proposed method is successfully implemented in ECG monitoring system using smartphone with high performance. The accuracy, positive predictive, and sensitivity of the QRS-complex detection in the system are ۹۹.۷۰%, ۹۹.۷۸%, and ۹۹.۹۲%, respectively. The range of ۹۵% LoA for the comparison between manual and the system’s QT-interval measurement is ۰.۲۱۶. The results show that the proposed method is dependable on the measure of the QT-interval and outperforms the other methods in term of correlation coefficient and range of ۹۵% LoA.

نویسندگان

- -

MSc, Department of Physics, Graduate Program, University Sebelas Maret Jl. Ir. Sutami ۳۶A Kentingan Jebres Surakarta ۵۷۱۲۶, Indonesia

- -

PhD, Department of Physics, University Sebelas Maret Jl. Ir. Sutami ۳۶A Kentingan Jebres Surakarta ۵۷۱۲۶, Indonesia

- -

PhD, Center for Information and Communication Technology Agency for Assessment and Application of Technology, Indonesia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shaikh MU, Ahmad SA, Adnan WA. Investigation of Data Encryption ...
  • Nuryani SL, Nguyen HT. Electrocardiographic T-wave peak-to-end interval for hypoglycaemia ...
  • Ashtiyani M, Navaei Lavasani S, Asgharzadeh Alvar A, Deevband MR. ...
  • Anderson HN, Bos JM, Haugaa KH, Morlan BW, Tarrell RF, ...
  • Niemeijer MN, Van Den Berg ME, Eijgelsheim M, Rijnbeek PR, ...
  • Funck-Brentano C, Ouologuem N, Duparc S, Felices M, Sirima SB, ...
  • Zong W, Saeed M, Heldt T. A QT interval detection ...
  • Wu CY, Chiu HW. A semi-automatic QT interval measurement based ...
  • Chudacek V, Huptych M, Novak D, Lhotska L. Automatic QT ...
  • Kasamaki Y, Ozawa Y, Ohta M, Sezai A, Yamaki T, ...
  • Panicker GK, Karnad DR, Natekar M, Kothari S, Narula D, ...
  • Oresko JJ, Jin Z, Cheng J, Huang S, Sun Y, ...
  • Al-Mardini M, Aloul F, Sagahyroon A, Al-Husseini L. Classifying obstructive ...
  • Kakria P, Tripathi NK, Kitipawang P. A real-time health monitoring ...
  • Hu J, Cui X, Gong Y, Xu X, Gao B, ...
  • Elgendi M, Eskofier B, Dokos S, Abbott D. Revisiting QRS ...
  • Smaoui G, Young A, Abid M. Single scale CWT algorithm ...
  • Liu SH, Wang JJ, Su CH, Tan TH. Development of ...
  • Brucal SG, Guemo JR, Montante SJ, Ng CA, Wong DJ. ...
  • Lin CC, Liou YS, Zhou Z, Wu S. Intelligent Exercise ...
  • Wu T, Redouté JM, Yuce M. A Wearable, Low-Power, Real-Time ...
  • Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, ...
  • Laguna P, Thakor NV, Caminal P, Jane R, Yoon HR, ...
  • Pambudi Utomo T, Nuryani N. QRS peak detection for heart ...
  • Sharma T, Sharma KK. QRS complex detection in ECG signals ...
  • Varanini M, Tartarisco G, Balocchi R, Macerata A, Pioggia G, ...
  • Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE ...
  • Belchandan AK, Deshmukh K, Kumar J. Removal of Noises in ...
  • Vishnubhotla R. Pre-processing of ECG signal for ambulatory use. NIU ...
  • Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE ...
  • Miljković N, Popović N, Djordjević O, Konstantinović L, Šekara TB. ...
  • Zhou SH, Helfenbein ED, Lindauer JM, Gregg RE, Feild DQ. ...
  • Elgendi M. Fast QRS detection with an optimized knowledge-based method: ...
  • Elgendi M, Norton I, Brearley M, Abbott D, Schuurmans D. ...
  • Elgendi M, Eskofier B, Abbott D. Fast T wave detection ...
  • Doğan NÖ. Bland-Altman analysis: A paradigm to understand correlation and ...
  • نمایش کامل مراجع