Dimensionality Reduction in EMG-Based Estimation of Wrist Kinematics
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 10، شماره: 5
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 95
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-10-5_017
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Pattern recognition has shown remarkable success in decoding motor information from electromyogram (EMG) signals. To decrease the computational complexity in EMG pattern recognition, it may be useful to reduce the dimensionality of the model input. This paper investigates the effect of reducing the dimensionality of EMG features in a regression-based motion intent estimation model. Ten able-bodied subjects participated in this analytic study. EMG signals from the right forearm and angle of the left wrist in three degrees of freedom (DoF) were measured, concurrently. The TD features were extracted from eight EMG channels, resulting in a total of ۳۲ features. Three dimensionality reduction methods including principal component analysis (PCA), non-negative matrix factorization (NNMF), and canonical correlation analysis (CCA) were applied to the EMG features. Reducing the dimension of the EMG features below a certain threshold degraded the performance of the EMG pattern recognition model. Otherwise, dimensionality reduction did not change the performance. These thresholds for the PCA, NNMF, and CCA methods were ۲۵, ۲۶, and ۱۳, respectively. Based on the results, CCA substantially outperformed PCA and NNMF, as it allowed a significant reduction of the EMG features size, from ۳۲ to ۱۳, with no adverse impact on the performance.
کلیدواژه ها:
نویسندگان
A Ameri
PhD, Deptartment of Biomedical Engineering , School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :