Optimization of size of informions for designing nonlinear vibration Neuro-modellers of dams
محل انتشار: دومین کنفرانس بین المللی آکوستیک و ارتعاشات
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,323
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISAV02_237
تاریخ نمایه سازی: 26 اسفند 1391
چکیده مقاله:
In this paper a Multi-Layer Feed Forward Neural Network (MLFFNN) has been designed to be used in nonlinear vibration analysis of Koyna dam which is a concrete gravity dam, located inKoyna, India. The dam has extensively been studied by many authors in the past and there is quite a large amount of information and data available on its modeling, behavior and response. Thedesigned neural network which is called Neuro-modeller, is capable of dynamic analysis of thedam similar to an analysis software which is capable of receiving a seismic record through out thetime, as input, to perform dynamic analysis as output. The success of the Neuro-modeller ishighly dependent upon the data it receives at each analysis time step to start the next time step of analysis as well as its architecture. The size and content of the vector of input information, whichis called informion, should be optimized so that the Neuro-modeller can both simulate the response with desirable accuracy and also can be capable of generalization.
کلیدواژه ها:
نویسندگان
Abdolreza Joghataie
Faculty member, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Mehrdad Shafiei Dizaji
MSc graduate, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :