Extracting Structural System Matrices by Using the Com-bined DVA Measurements
محل انتشار: دومین کنفرانس بین المللی آکوستیک و ارتعاشات
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,282
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISAV02_116
تاریخ نمایه سازی: 26 اسفند 1391
چکیده مقاله:
Two separate time domain methods are presented for the extraction of mass and stiffness matrices from Four-story building of IASC-ASCE Structural Health Monitoring Benchmark. In first meth-od, the equivalent state-space matrices are obtained by Eigensystem Realization Algorithm (ERA) from the measured input and output data. In spite high nonlinearity of the inverse problem, this method consists of two sets of linear equations; find a transformation matrix that converts the identified state-space model in any arbitrary coordinates to physical one, and then derive the sys-tem physical parameters from the state-space model in physical coordinates. The second is con-tinuous-time Markov method based on the invariance parameters. An explicit expression of the relationship is constructed between the continuous-time Markov parameters, the structural system matrices, and the influence matrices for output combined measurements of displacement, velocity and acceleration (DVA) together with the input excitations as well as the input force. The ob-tained structural system matrices are validated by measured displacement, velocity and accelera-tion responses.
کلیدواژه ها:
Structural Health Monitoring (SHM) ، Eigensystem Realization Algorithm (ERA) ، Structural System Matrices ، Physical Coordinates ، IASC-ASCE Benchmark
نویسندگان
Touraj Taghikhany
Assistant Professor, Civil Engineering, Amirkabir University of Technology, Tehran,
Mohammad Hasan Tajik
MSc Student, Civil Engineering, Amirkabir University of Technology, Tehran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :