Non-Newtonian thermal convection of eyring-powell fluid from an isothermal sphere with biot number effects‎

سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIM-8-2_004

تاریخ نمایه سازی: 27 دی 1402

چکیده مقاله:

This article investigates the nonlinear, steady boundary layer flow and heat transfer of an incompressible Eyring-Powell non-Newtonian fluid from an isothermal sphere with Biot number effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The influence of a number of emerging dimensionless parameters, namely the Eyring-Powell rheological fluid parameter \left( \varepsilon \right) , the local non-Newtonian parameter based on length scale \left( \delta \right) , Prandtl number (Pr), Biot number \left( \gamma\right) and dimensionless tangential coordinate \left(\xi \right) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is found that the velocity and heat transfer rate (Nusselt number) decrease with increasing \left( \varepsilon \right) , whereas temperature and skin friction increase. An increasing \left(\delta\right) is observed to enhance velocity, local skin friction and heat transfer rate but reduces the temperature. An increase \left( \gamma \right) is seen to increase velocity, temperature, local skin friction and Nusselt number. The study is relevant to chemical materials processing ‎applications.‎

کلیدواژه ها:

Non-Newtonian Eyring-Powell fluid model ، Isothermal sphere ، ‎F‎inite difference numerical method ، Boundary layers ، Biot number

نویسندگان

S. Abdul ‎Gaffar‎

Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-۵۱۵۰۰‎۲, India‎.

V. Ramachandra Prasad

Department of Mathematics, Madanapalle Institute of Technology and Sciences, Madanapalle-۵۱۷۳۲‎۵, India‎.

E. Keshava Reddy

Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-۵۱۵۰۰۲, India.