Non-Newtonian thermal convection of eyring-powell fluid from an isothermal sphere with biot number effects
محل انتشار: مجله بین المللی ریاضیات صنعتی، دوره: 8، شماره: 2
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJIM-8-2_004
تاریخ نمایه سازی: 27 دی 1402
چکیده مقاله:
This article investigates the nonlinear, steady boundary layer flow and heat transfer of an incompressible Eyring-Powell non-Newtonian fluid from an isothermal sphere with Biot number effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The influence of a number of emerging dimensionless parameters, namely the Eyring-Powell rheological fluid parameter \left( \varepsilon \right) , the local non-Newtonian parameter based on length scale \left( \delta \right) , Prandtl number (Pr), Biot number \left( \gamma\right) and dimensionless tangential coordinate \left(\xi \right) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is found that the velocity and heat transfer rate (Nusselt number) decrease with increasing \left( \varepsilon \right) , whereas temperature and skin friction increase. An increasing \left(\delta\right) is observed to enhance velocity, local skin friction and heat transfer rate but reduces the temperature. An increase \left( \gamma \right) is seen to increase velocity, temperature, local skin friction and Nusselt number. The study is relevant to chemical materials processing applications.
کلیدواژه ها:
Non-Newtonian Eyring-Powell fluid model ، Isothermal sphere ، Finite difference numerical method ، Boundary layers ، Biot number
نویسندگان
S. Abdul Gaffar
Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-۵۱۵۰۰۲, India.
V. Ramachandra Prasad
Department of Mathematics, Madanapalle Institute of Technology and Sciences, Madanapalle-۵۱۷۳۲۵, India.
E. Keshava Reddy
Department of Mathematics, Jawaharlal Nehru Techological University Anantapur, Anantapuramu-۵۱۵۰۰۲, India.