Hybrid PSOS Algorithm For Continuous ‎Optimization

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 72

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIM-11-2_008

تاریخ نمایه سازی: 26 دی 1402

چکیده مقاله:

Particle swarm optimization (PSO) is one of the practical metaheuristic algorithms which is applied for numerical global optimization‎. ‎It benefits from the nature inspired swarm intelligence‎, ‎but it suffers from a local optima problem‎. ‎Recently‎, ‎another nature inspired metaheuristic called Symbiotic Organisms Search (SOS) is proposed‎, ‎which doesn't have any parameters to set at start‎. ‎In this paper‎, ‎the PSO and SOS algorithms are combined to produce a new hybrid metaheuristic algorithm for the global optimization problem‎, ‎called PSOS‎. ‎In this algorithm‎, ‎a minimum number of the parameters are applied which prevent the trapping in local solutions and increase the success rate‎, ‎and also the SOS interaction phases are modified‎. ‎The proposed algorithm consists of the PSO and the SOS phases‎. ‎The PSO phase gets the experiences for each appropriate solution and checks the neighbors for a better solution‎, ‎and the SOS phase benefits from the gained experiences and performs symbiotic interaction update phases‎. ‎Extensive experimental results showed that the PSOS outperforms both the PSO and SOS algorithms in terms of the convergence and success ‎rates.‎

نویسندگان

A. Jafarian

Young Researchers and Elite Club‎, ‎U‎rmia Branch‎, ‎Islamic Azad University‎, ‎U‎rmia‎, ‎Iran‎.

B. Farnad

Department of Computer Engineering‎, ‎Urmia Branch‎, ‎Islamic Azad University‎, ‎Urmia‎, ‎Iran‎.