Better Neighbors, Longer Life: an Energy Efficient Cluster Head Selection Algorithm in Wireless Sensor Networks based on Particle Swarm Optimization
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 3
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 166
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-11-3_009
تاریخ نمایه سازی: 20 دی 1402
چکیده مقاله:
Clustering is one of the most effective techniques for reducing energy consumption in wireless sensor networks. But selecting optimum cluster heads (CH) as relay nodes has remained as a very challenging task in clustering. All current state of the art methods in this era only focus on the individual characteristics of nodes like energy level and distance to the Base Station (BS). But when a CH dies it is necessary to find another CH for cluster and usually its neighbor will be selected. Despite existing methods, in this paper we proposed a method that considers node neighborhood fitness as a selection factor in addition to other typical factors. A Particle Swarm Optimization algorithm has been designed to find best CHs based on intra-cluster distance, distance of CHs to the BS, residual energy and neighborhood fitness. The proposed method compared with LEACH and PSO-ECHS algorithms and experimental results have shown that our proposed method succeeded to postpone death of first node by ۵.۷۹%, death of ۳۰% of nodes by ۲۵.۵۰% and death of ۷۰% of nodes by ۵۸.۶۷% compared to PSO-ECHS algorithm
کلیدواژه ها:
نویسندگان
Mahsa Dehbozorgi
Department of Computer Engineering, Pasargad Higher Education Institute, Shiraz, Iran.
Pirooz Shamsinejadbabaki
Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran.
Elmira Ashoormahani
Department of Computer Engineering, Pasargad Higher Education Institute, Shiraz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :