Bearing Capacity of Circular Footing Resting on Recycled Construction Waste Materials using ANN Method
محل انتشار: مجله معدن و محیط زیست، دوره: 15، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 78
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-15-1_006
تاریخ نمایه سازی: 20 دی 1402
چکیده مقاله:
The goal of this research work was to use an Artificial Neural Network (ANN) model to predict the ultimate bearing capacity of circular footing resting on recycled construction waste over loose sand. A series of plate load tests were conducted by varying the thickness of two sizes of recycled construction waste (۵ mm and ۱۰.۶ mm) layer (۰.۴d, ۰.۶d, ۰.۸d, ۱d, and ۱.۲d, d: diameter of footing) prepared at different relative densities (۳۰%, ۵۰%, and ۷۰%) overlaying. The ultimate bearing capacity obtained for various combinations was used to develop the ANN model. The input parameters of the ANN model were thickness of recycled construction waste layer to diameter of circular footing ratio, angle of internal friction of sand, unit weight of sand, angle of internal friction of recycled construction waste and unit weight of recycled construction waste, and the model's output parameter was ultimate bearing capacity. The FANN-SIGMOD_SYMMETRIC model with topology ۳-۲-۱ provided a higher estimate of the ultimate bearing capacity of circular footing, according to the ANN findings. The sensitivity analysis also revealed that the unit weight of sand and angle of internal friction of sand had insignificant effects on ultimate bearing capacity. The estimated ultimate bearing capacity was most affected by the angle of internal friction of recycled construction waste. The result of multiple linear regression analysis was not as good as the ANN model at predicting the ultimate bearing capacity.
کلیدواژه ها:
نویسندگان
Anant Saini
Department of Civil Engineering, National Institute of Technology Hamirpur, Himachal Pradesh, India
Jitendra Yadav
Department of Civil Engineering, National Institute of Technology Kurukshetra, Haryana, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :