Designing a model of key indicators for evaluating financial technology in Iran's banking industry with Mixed approach
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 117
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-9-35_019
تاریخ نمایه سازی: 17 دی 1402
چکیده مقاله:
The purpose of this research was to provide a model of key indicators for evaluating financial technology in Iran's banking industry. , In this research, using a mixed-method design, In the qualitative approach, the Delphi method is used, The statistical population in the qualitative section was ۱۲ experts who were selected based on snowball method , The process of data analysis was carried out in two stages, which includes identifying the key indicators of financial technology evaluation in Iran's banking industry through the interview tool and using thematic analysis method and theoretical validation of the research model. In the quantitative part, data were collected using a questionnaire and T-test. The results of the research showed that the key indicators model for evaluating financial technology in Iran's banking industry consists of ۲۰ sub-indices as well as six main indicators including financial technology services, interaction of financial technologies with customers, new business partners, new revenue models, organizational innovation and innovation Technologically .The results of this study allow bank managers to have an integrated plan to improve the existing conditions to increase these factors in their organization
کلیدواژه ها:
نویسندگان
Taher Alizadeh
Department of Management, Karaj Branch, Islamic Azad University, Karaj, Iran
zohreh mousavi kashi
Department of Management, Karaj Branch, Islamic Azad University, Karaj, Iran
Azam Shokri Cheshmeh Sabzi
Assistant Professor, Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :