سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

مقایسه روش رگرسیون چند متغیره و شبکه ی عصبی مصنوعی در مدل سازی دمای خاک با استفاده از عناصر هواشناسی (مطالعه موردی: ایستگاه سینوپتیک بندرعباس)

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 126

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_WMJI-7-24_004

تاریخ نمایه سازی: 5 دی 1402

چکیده مقاله مقایسه روش رگرسیون چند متغیره و شبکه ی عصبی مصنوعی در مدل سازی دمای خاک با استفاده از عناصر هواشناسی (مطالعه موردی: ایستگاه سینوپتیک بندرعباس)

دمای خاک به عنوان یک عنصر مهم و تاثیر گذار در رشد گیاهان مطرح است، که در ایستگاه ­های هواشناسی به صورت منظم و پیوسته اندازه گیری نمی شود، ازاین روی داده های دمای خاک با کمبود آماری مواجه است. دمای خاک در اعماق مختلف متفاوت و متاثر از دمای محیط بیرون و دیگر عوامل است. در این تحقیق سعی شده است تا دمای اعماق مختلف خاک رسی- شنی (۵،۱۰،۲۰،۳۰،۵۰ و۱۰۰ سانتی متری) را به کمک پارامترهای روزانه ی هواشناسی موجود در ایستگاه هواشناسی بندرعباس به روش رگرسیون چند متغیره و شبکه ی عصبی مصنوعی برای دوره آماری سال­ های ۱۳۷۲ تا ۱۳۹۶ مدل سازی شود. پس از محاسبه ی ضریب همبستگی بین دمای اعماق خاک با پارامترهای هواشناسی مشخص گردید، دمای خشک، مقدار تبخیر و دمای نقطه ی شبنم بیش­ترین همبستگی را با دمای خاک در اعماق مختلف دارد. میزان قدر مطلق خطای محاسبه شده در روش رگرسیون بین ۰۹/۱ درجه (برای عمق ۱۰ سانتی­ متری) و ۸۸/۱ درجه (برای عمق ۱۰۰ سانتی متری) و در روش شبکه ی عصبی بین ۱۷/۱ و ۸۵/۱ درجه می باشد. بنابراین با توجه به ساده بودن رگرسیون چندمتغیره و عدم تفاوت زیاد با نتایج شبکه عصبی مصنوعی، از مدل فوق در مناطق مشابه برای پیش بینی دمای خاک می توان بهره برد.

کلیدواژه های مقایسه روش رگرسیون چند متغیره و شبکه ی عصبی مصنوعی در مدل سازی دمای خاک با استفاده از عناصر هواشناسی (مطالعه موردی: ایستگاه سینوپتیک بندرعباس):

نویسندگان مقاله مقایسه روش رگرسیون چند متغیره و شبکه ی عصبی مصنوعی در مدل سازی دمای خاک با استفاده از عناصر هواشناسی (مطالعه موردی: ایستگاه سینوپتیک بندرعباس)

سعید خوشحال

فارغ التحصیل کارشناسی ارشد رشته هواشناسی، دانشگاه هرمزگان

ام لبنین بذرافشان

دانشیار، گروه مهندسی منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه هرمزگان