Estimation of Wheel-Rail Adhesion Force Using Traction System Behavior

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-12-1_019

تاریخ نمایه سازی: 5 دی 1402

چکیده مقاله:

kground and Objectives:‎ Traction system and adhesion between wheel and rail are fundamental aspects in rail transportation. Depending on the vehicle's running conditions, different levels of adhesion are needed. Low adhesion between wheel and rail can be caused by leaves on the line or other contaminants, such as rust or grease. Low adhesion can occur at any time of year especially in autumn, resulting in disruptions to passenger journeys. Increased wheel-rail adhesion for transit rail services results in better operating performance and system cost savings. Deceleration caused by low adhesion, will extend the braking distance, which is a safety issue. Because of many uncertain or even unknown factors, adhesion modelling is a time taking task. Furthermore, as direct measurement of adhesion force poses inherent challenges, state observers emerge as the most viable choice for employing indirect estimation techniques. Certain level of adhesion between wheel and rail leads to reliable, efficient, and economical operation.Methods:‎ This study introduces an advantageous approach that leverages the behavior of traction motors to provide support in achieving control over wheel slip and adhesion in railway applications. The proposed method aims to enhance the utilization of existing adhesion, minimize wheel deterioration, and mitigate high creep levels. In this regard, estimation of wheel-rail adhesion force is done indirectly by concentrating on induction motor parameters as railway traction system and dynamic relationships.  Meanwhile, in this study, we focus on developing and applying the sixth-order Extended Kalman Filter (EKF) to create a highly efficient sensorless re-adhesion control system for railway vehicles.Results: ‎EKF based design is compared with Unscented Kalman Filter (UKF) based and actual conditions and implemented in Matlab to check the accuracy and performance ability for state and parameter estimation. Experimental results showed fast convergence, high precision and low error value for EKF.Conclusion:‎ The proposed technique has the capability to identify and assess the current state of local adhesion, while also providing real-time predictions of wear. Besides, in combination with control methods, this approach can be very useful in achieving high wheel-rail adhesion performance under variable complex road conditions

نویسندگان

M. Moradi

Faculty of Electrical Engineering and Computer, University of Birjand, Birjand, Iran.

R. Havangi

Faculty of Electrical Engineering and Computer, University of Birjand, Birjand, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C. Schwarz, A. Keck, “Simultaneous estimation of wheel-rail adhesion and brake friction ...
  • R. Lewis, G. Trummer, K. Six, J. Stow, H. Alturbeh, P. Shackleton, B. Bryce, L. Buckley Johnstone, “Leaves on the line: Characterizing leaf ...
  • H. Chen, T. Furuya, S. Fukagai, S. Saga, J. Ikoma, ...
  • M. Watson, B. White, J. Lanigan, T. Slatter, R. Lewis, “The co- mposition and friction reducing properties of ...
  • J. Zhou, M. Wu, C. Tian, et al., “Experimental investigation on wheel–rail ...
  • Y. Lyu, E. Bergseth, U. Olofsson “Open system tribology and ...
  • M. Harmon, R. Lewis “Review of top of rail friction ...
  • M. Shen., Y. Qin, D. Ji, et al. “Role of ...
  • H. Chen, H. Tanimoto, “Experimental observation of temp-erature and surface ...
  • U. Olofsson, Y. Lyu, “Open system tribology in the wheel–rail ...
  • I. Yasuoka, T. Henmi, Y. Nakazawa, I. Aoyama, "Improvement of ...
  • Y. Matsumoto, N. Eguchi, A. Kawamura, “Novel re-adhesion control for ...
  • K. Zhao, P. Li, Ch. Zhang, J. He, Y. Li, ...
  • R. Bibi, B. S. Chowdry, R. A. Shah, “PSO based ...
  • S. Shrestha, Q. Wu, M. Spiryagin, “Review of adhesion es-timation ...
  • X. Fang, S. Lin, Z. Yang , F. Lin, H. ...
  • B. Liu, T. X. Mei, S. Bruni, “Design and optimisation of wheel–rail profiles for adhesion ...
  • Y. Chen, H. Dong, J. Lu, X. Sun, L. Guo, ...
  • M. Yamashita, T. Soeda, “Anti-slip re-adhesion control method for increasing ...
  • R. Rizzo, D. Iannuzzi, “Indirect friction force identification for application ...
  • I. Hussain, T. X. Mei, R. T. Ritchings, “Estimation of ...
  • G. Charles, R. Goodall, R. Dixon, “Model-based condition monitoring at ...
  • F. Orderud, “Comparison of kalman filter estimation approa-ches for state ...
  • Y. Zhao, B. Liang, “Re-adhesion control for a railway single ...
  • S. Wang, J. Xiao, J. Huang, H. Sheng, “Locomotive wheel ...
  • P. D. Hubbard, C. Ward, R. Dixon, R. Goodall, “Verification ...
  • A. Onat, P. Voltr, M. Lata, “An unscented Kalman filter-based ...
  • S. Jafarzadeh, C. Lascu, M. Fadali, “Square root unscented Kalman ...
  • S. Jafarzadeh, C. Lascu, M. Fadali, “State estimation of induction ...
  • B. Akin, U. Orguner, A. Ersak, M. Ehsani, “Simple derivative ...
  • M. Barut, S. Bogosyan, M. Gokasan, “Speed-sensorless estimation for induction ...
  • M. Spiryagin, P. Wolfs, C. Cole, V. Spiryagin, “Design and simulation ...
  • O. Polach, “A fast wheel-rail forces calculation computer,” Veh. Syst. ...
  • J. Kalker, “On The rolling contact of two elastic bodies ...
  • نمایش کامل مراجع