New Production Rate Model of Wellhead Choke for Niger Delta Oil Wells
محل انتشار: مجله علوم و فن آوری نفت، دوره: 10، شماره: 4
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 116
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-10-4_005
تاریخ نمایه سازی: 30 آذر 1402
چکیده مقاله:
An accurate prediction of production rate for wellhead choke is highly vital in petroleum production engineering applications. It is deployed in the control of surface production, prevention of water and gas coning, and optimization of the entire production systems. Although there are several choke correlations in literature to estimate production rate; however, most of the published correlations were derived with datasets outside Niger Delta fields. Thus, this study presents a new empirical-based model, which is a derivative from Choubineh et al. model, to predict the liquid production rate of chokes for Niger Delta oil wells. The new model was developed and optimized using multivariate regression and the Generalized Reduced Gradient (GRG) optimization algorithm. Furthermore, a total of ۲۸۳ production data points from ۲۱ oil wells in ۷ fields in the Niger Delta region, with a randomly generated ratio of ۷۰: ۳۰ of the datasets, was used to develop and validate the developed model. The developed Model ۲ predicted the choke production rate with a fitting accuracy of average absolute percentage error (AAPE) of ۲۳.۷۳% and coefficient of determination (R۲) of ۰.۹۷۳; in addition, the model predicted validating accuracy of AAPE of ۹.۳۳% while the coefficient of determination (R۲) stands at ۰.۹۸۲. Consequently, this model can be relied on as a quick and robust tool for estimating the choke production rate of producing oil wells. Moreover, the sensitivity analysis results show that the choke size has the most significant impact on the predicted liquid rate. In contrast, gas gravity has the least impact.
کلیدواژه ها:
نویسندگان
Kayode Sanni
Department of Petroleum Engineering, Federal University of Petroleum Resources, Effurun, Nigeria
Promise Longe
Department of Petroleum Engineering, Federal University of Petroleum Resources, Effurun, Nigeria
Sylvester Okotie
Department of Petroleum Engineering, Federal University of Petroleum Resources, Effurun, Nigeria
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :