یادگیری رتبه بندی محتوای فارسی وب بر مبنای برنامه نویسی ژنتیک چند لایه

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 86

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_AICTI-10-37_004

تاریخ نمایه سازی: 29 آذر 1402

چکیده مقاله:

یادگیری رتبهبندی، یک رویکرد نو ظهور به منظور رفع چالشهای موجود و بهبود عملکرد جویشگرهای وب، بسیار امید بخش و کارآمد است. در عین حال عدم توجه جدی به سوابق تعاملات کاربران با جویشگر طی فرآیند جستجو و ارزیابی نتایج بدست آمده، یکی از معضلات جدی آن بشمار میرود. در عین حال حجم بسیار زیاد ویژگیهای مورد نیاز از اسناد و پرسوجوهای کاربران نیز کاربردی بودن این رویکرد را در شرایط واقعی با ابهام مواجه ساخته است. استفاده از مدل اطلاعات کلیک از گذر دادهها و تولید ویژگیهای کلیک از گذر داده، راهکار نوینی است که بر مبنای آن و با بکارگیری مدل برنامهنویسی ژنتیک چند لایه، مدل رتبهبندی مناسبی تحت عنوان MGP-Rank برای بازیابی اطلاعات انگلیسی وب، عرضه شده است. در این پژوهش این، با عنایت به ویژگیهای خاص زبان فارسی، از طریق ارائه سناریوهای مناسب برای ایجاد ویژگیهای کلیک از گذر داده این الگوریتم، این الگوریتم بومیسازی شده است. نتایج حاصل از ارزیابی عملکرد این الگوریتم در حوزه زبان فارسی با استفاده از مجموعه داده dotIR، حاکی از توانمندی قابل ملاحظه آن نسبت به روشهای مرجع رتبهبندی اطلاعات است. این بهبود عملکرد، بخصوص در بخش ابتدایی فهرست نتایج جستجو که غالبا بیشتر مورد مراجعه کاربران است، قابل توجه است.

کلیدواژه ها:

یادگیری رتبه بندی ، مدل برنامه نویسی ژنتیک چند لایه ، ویژگی های کلیک از گذر داده ، محتوای فارسی وب ، مجموعه داده dotIR

نویسندگان

امیرحسین کیهانی پور

دانشگاه تهران