Prediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO۲ Injection Using ANN & ANFIS Models
محل انتشار: مجله علوم و فن آوری نفت، دوره: 1، شماره: 2
سال انتشار: 1390
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 120
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-1-2_005
تاریخ نمایه سازی: 29 آذر 1402
چکیده مقاله:
Although CO۲ injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special importance in optimization of the miscible CO۲ injection. The purpose of this research is to predict the onset of asphaltene and bubble point pressure of fluid reservoir using artificial intelligence developed models including a software simulator called “Intelligent Proxy Simulator (IPS)” based on structure artificial neural networks and “adaptive neural fuzzy inference system”, which is a combination of fuzzy logic and neural networks. To evaluate the predictions by artificial intelligence networks at the onset of deposition, a solid model using Winprop software was employed. Standing correlations were used for comparison of bubble point pressure. The results obtained using artificial intelligence models in prediction of the onset of asphaltene deposition and bubble point pressure during injection of CO۲ were more accurate than those obtained from the thermodynamics Solid model and the Standing correlation respectively.
کلیدواژه ها:
Onset Pressure of Asphaltene ، Bubble Point Pressure ، CO۲ Injection ، Back Propagation Algorithm ، Swarm Optimizing Algorithm ، Adaptive Neural Fuzzy Inference System
نویسندگان
Ehsan Khamehchi
Faculty of Petroleum Engineering, Amirkabir University of Technology
Reza Behvandi
Faculty of Petroleum Engineering, Azad University Science and Research
fariborz rashidi
Amirkabir university of technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :