Optimizing design of ۳D seismic acquisition by CRS trace interpolation
محل انتشار: مجله فیزیک زمین و فضا، دوره: 42، شماره: 4
سال انتشار: 1395
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 102
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JESPHYS-42-4_001
تاریخ نمایه سازی: 27 آذر 1402
چکیده مقاله:
Land seismic data acquisition in most of cases suffers from obstacles in fields which deviates geometry of the real acquired data from what was designed. These obstacles will cause gaps, narrow azimuth and offset limitation in the data. These shortcomings, not only prevents regular trace distribution in bins, but also distorts the subsurface image by reducing illumination of the target formation. However, there are some methods available that can compensate gaps in data due to field obstacles mainly by trace interpolation techniques. The common reflection surface (CRS) method which was previously introduced for seismic imaging in complex geological structures also could be used for trace interpolation to fill the gaps and increase fold of the data. In this study, we combined two different methods of trace interpolation and distribution in bins for solving the problem of gaps and low illumination of the target formation in a ۳D seismic acquisition study area in SW Iran. After processing old ۲D lines available from the same area, the CRS parameters were obtained for proper definition of the acquisition design. Then by combining the CRS trace interpolation scheme and trace distribution, possible gaps in the data was resolved and regular trace distribution in all bins and azimuths were achieved. Result showed increasing in redundancy in bins which will prevent occurring gaps in data in case of inevitable field obstacles. Result shows that this strategy could be used to construct lost traces and prevent further problem in seismic imaging.
کلیدواژه ها:
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :