LSTM and XGBoost Models for ۲۴-hour Ahead Forecast of PV Power from Direct Irradiation
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 168
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_RERA-5-2_009
تاریخ نمایه سازی: 24 آذر 1402
چکیده مقاله:
In this work, the photovoltaic power forecast for the next ۲۴ hours by combining a time series forecasting model (LSTM) and a regression model (XGBoost) from direct irradiation only is performed. Several meteorological parameters such as irradiance, ambient temperature, wind speed, relative humidity, sun position, dew point were identified as influencing parameters of PV power variability. Thanks to the parameter extraction and selection techniques of the XGBoost model, only the direct irradiation could be kept as input parameters. The LSTM model was used to predict the direct irradiation for the next ۲۴ hours and the XGBoost model to estimate the future power from the predicted irradiation. These models were developed under Python ۳, the exploited data were downloaded in the PVGIS database for the city of Abomey-Calavi in Benin and the prediction was carried out on a panel of ۱۰۰۰W of peak power. An experimental validation was then performed by comparing the predicted irradiance values to the measured values on site. It was obtained for the LSTM model a root mean square error of ۳.۶۶ W/m۲ and for the XGBoost model a root mean square error and a regression coefficient of ۱.۷۲ W and ۰.۹۹۲۱۲۹ respectively. These results were compared to the LSTM-XGBoost performances with irradiation, temperature, sun position and wind speed as inputs. It was found that the use of irradiation alone as input did not as such impair the forecast performance. The proposed method was also found to be more efficient than LSTM and CNN models used alone.
کلیدواژه ها:
نویسندگان
Kossoko Babatoundé Audace Didavi
Department of Electrical Engineering Polytechnic School of Abomey-Calavi (EPAC), Abomey-Calavi, Benin.
Richard Gilles Agbokpanzo
Department of ENSET-Lokossa National University of Science, Technology, Engineering and Mathematics of Abomey (UNSTIM), Abomey, Benin
Bienvenu Macaire Agbomahena
Department of Electrical Engineering Polytechnic School of Abomey-Calavi (EPAC), Abomey-Calavi, Benin.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :